
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION 1

Quality of Automated Program Repair
on Real-World Defects

Manish Motwani, Mauricio Soto, Yuriy Brun, Senior Member, IEEE , René Just, Claire Le Goues, Member, IEEE

Abstract—

Automated program repair is a promising approach to reducing the costs of manual debugging and increasing software quality. However, recent studies
have shown that automated program repair techniques can be prone to producing patches of low quality, overfitting to the set of tests provided to the
repair technique, and failing to generalize to the intended specification. This paper rigorously explores this phenomenon on real-world Java programs,
analyzing the effectiveness of four well-known repair techniques, GenProg, Par, SimFix, and TrpAutoRepair, on defects made by the projects’ developers
during their regular development process. We find that: (1) When applied to real-world Java code, automated program repair techniques produce
patches for between 10.6% and 19.0% of the defects, which is less frequent than when applied to C code. (2) The produced patches often overfit to the
provided test suite, with only between 13.8% and 46.1% of the patches passing an independent set of tests. (3) Test suite size has an extremely small
but significant effect on the quality of the patches, with larger test suites producing higher-quality patches, though, surprisingly, higher-coverage test
suites correlate with lower-quality patches. (4) The number of tests that a buggy program fails has a small but statistically significant positive effect on the
quality of the produced patches. (5) Test suite provenance, whether the test suite is written by a human or automatically generated, has a significant
effect on the quality of the patches, with developer-written tests typically producing higher-quality patches. And (6) the patches exhibit insufficient
diversity to improve quality through some method of combining multiple patches. We develop JaRFly, an open-source framework for implementing
techniques for automatic search-based improvement of Java programs. Our study uses JaRFly to faithfully reimplement GenProg and TrpAutoRepair to
work on Java code, and makes the first public release of an implementation of Par. Unlike prior work, our study carefully controls for confounding factors
and produces a methodology, as well as a dataset of automatically-generated test suites, for objectively evaluating the quality of Java repair techniques
on real-world defects.

Index Terms—Automated program repair, patch quality, objective quality measure, Java, GenProg, Par, TrpAutoRepair, Defects4J

F

1 INTRODUCTION

AUTOMATED program repair holds the potential to improve
software quality while simultaneously reducing the reliance

on costly manual effort. For example, Facebook uses two automated
program repair tools, SapFix and Getafix, on their production code
to suggest defect patches [9], [89]. However, recent work examin-
ing the quality of automated program repair has found that patches
produced by many automated program repair techniques are often
of low quality [122] and not semantically equivalent to developer-
written patches [114]. In particular, our earlier work [122] found
that patches produced by GenProg [77], TrpAutoRepair [111], and
AE [132] typically pass only 68.7%, 72.1%, and 64.2% of inde-
pendent tests not used to create the patch, respectively. This both
raises an important concern about the practical usability of modern
automated repair techniques, and drives research toward building
techniques that produce higher-quality patches [68], [86], [88], [94].

Automated program repair techniques typically start with a
program version and a set of passing and failing tests, and then
modify the program version until finding a set of modifications
(a patch) that makes all the tests pass. The underlying issue is

• M. Motwani and Y. Brun are with the College of Information and Com-
puter Sciences at the University of Massachusetts Amherst, Amherst, Mas-
sachusetts 01003-9264. Email: {mmotwani, brun}@cs.umass.edu

• M. Soto and C. Le Goues are with the School of Computer Science at
the Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. Email:
{msotogon, clegoues}@cs.cmu.edu

• R. Just is with the Paul G. Allen School of Computer Science & Engineering
at the University of Washington, Seattle, Washington 98195-2350. Email:
rjust@cs.washington.edu

that the set of tests provides a partial specification of the desired
behavior, and thus the produced patches may overfit to those tests.
For example, while, typically, many patches in a technique’s search
space pass the supplied tests, relatively few are equivalent to the
developer-written patch [88], [114]; the automated repair technique
has no way of knowing which is the better patch to return.

Our prior work introduced an objective methodology for eval-
uating the quality of a patch and had successfully applied it to a
set of very small programs written by novice developers in an in-
troductory programming course [122]. While that work identified
important shortcomings of automated program repair techniques,
its results may not generalize beyond the very small and simple
programs. That study only considered two generate-and-validate
(G&V) repair techniques, did not control for confounding factors,
and used test suite size as a proxy for coverage. By contrast, this
work performs a detailed study with four G&V repair techniques on
real-world defects in real-world, large, complex projects employ-
ing rigorous statistical analyses, properly measuring coverage, and
controlling for confounding factors. We use 5 programs with 357
defects created during real-world development from the Defects4J
benchmark [66]. We selected four representative repair techniques
and a diverse benchmark of defects to increase the likelihood that
our results generalize. We answer six research questions:

RQ1 Do G&V techniques produce patches for real-world Java
defects?

Answer: Yes, although less often than for C defects.

RQ2 How often and how much do the patches produced by G&V
techniques overfit to the developer-written test suite and fail to
generalize to the evaluation test suite, and thus ultimately to

mailto:mmotwani@cs.umass.edu,brun@cs.umass.edu
mailto:msotogon@cs.cmu.edu,clegoues@cs.cmu.edu
mailto:rjust@cs.washington.edu

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

the program specification?
Answer: Often. For the four techniques we evaluated, only be-

tween 13.8% and 41.6% of the patches pass 100% of an inde-
pendent test suite. Patches typically break more functionality
than they repair.

RQ3 How do the coverage and size of the test suite used to produce
the patch affect patch quality?

Answer: Larger test suites produce slightly higher-quality patches,
though, surprisingly, the effect is extremely small. Also surpris-
ingly, higher-coverage test suites correlate with lower quality,
but, again, the effect size is extremely small.

RQ4 How does the number of tests that a buggy program fails
affect the degree to which the generated patches overfit?

Answer: The number of failing tests correlates with slightly higher
quality patches.

RQ5 How does the test suite provenance (whether it is written by
developers or generated automatically) influence patch quality?

Answer: Test suite provenance has a significant effect on repair
quality, although the effect may differ for different techniques.
In most cases, human-written tests lead to higher-quality
patches.

RQ6 Can overfitting be mitigated by exploiting randomness in the
repair process? Do different random seeds overfit in different
ways?

Answer: The patches exhibit insufficient diversity to improve qual-
ity through some method of combining multiple patches.

Our methodology for measuring patch quality relies on an inde-
pendent test suite that is not given to the repair technique to produce
a patch. The independent test suite captures (again, partially) some
of the specifications not captured by the original test suite given to
the repair technique, and thus its passing rate independently evalu-
ates the quality of the patch. The alternative to this methodology
is a manual inspection of the patch, (e.g., [114]), but two indepen-
dent recent studies [72], [140] have empirically demonstrated that
our independent-test-suite-based methodology is more reliable and
more objective than manual inspection.

Prior studies of quality of automated program repair have ei-
ther used manual inspection for quality assessment [107], [122],
[131], or have focused on small programs and relatively-easy-to-fix
defects [122], [140]. Some studies did use a 224-defect subset
of the same benchmark of real-world programs we use, but used
manual inspection for quality assessment and, unlike our work,
assessed tools’ ability to produce patches and efficiency of patch
production, but did not identify the factors that affect patch quality
(RQs 3–6) [42], [90].

http://JaRFly.cs.umass.edu/

Our work overcomes two considerable
new engineering challenges. First, employ-
ing the objective, independent-test-suite-
based evaluation of patch quality, requires
the creation of high-quality, automatically-
generated test suites for real-world Java
projects. We develop a methodology for us-
ing today’s state-of-the-art test-suite genera-
tion techniques and overcoming their short-
comings to produce high-quality suites, and
we release both the methodology and the
generated test suites. Second, many automated program repair tech-
niques are designed and implemented for C (e.g., GenProg and

TrpAutoRepair) and Par [69], designed and implemented for Java,
was never released. We build JaRFly, the Java Repair Framework,
which simplifies the implementation of Java techniques for genetic
improvement (including but not limited to genetic improvement
techniques for program repair), and release Java-based implementa-
tions of GenProg, Par, and TrpAutoRepair. Our implementations of
GenProg and TrpAutoRepair are the first that faithfully follow the
original techniques’ designs, improving prior attempts at replicating
these techniques for Java. Our release of the Par implementation is
the first ever public release of Par. JaRFly is the first framework of
its kind that can handle the entire Defects4J dataset, including the
Closure compiler subject program.

The main contributions of our work are:
• An empirical evaluation of quality of program repair on real-

world Java defects, which outlines shortcomings and estab-
lishes a methodology and dataset for evaluating quality of new
repair techniques’ patches on real-world defects to promote
research on high-quality repair.

• A methodology for evaluating patch quality that fixes numer-
ous shortcomings in prior work, properly controlling for po-
tential confounding factors.

• A dataset of independent evaluation test suites for Defects4J
defects, and a methodology for generating such test suites.
Augmenting existing Defects4J defects with two, indepen-
dently created test suites can aid not only program repair, but
other test-based technology.

• Java Repair Framework (JaRFly), a publicly released, open-
source framework for building Java G&V repair techniques,
including our reimplementations of GenProg, Par, and Trp-
AutoRepair. JaRFly is designed to allow for easy combinations
and modifications to existing techniques, and to simplify exper-
imental design for automated program repair on Java programs.
http://JaRFly.cs.umass.edu/

The rest of this paper is structured as follows. Section 2 de-
scribes the background of automated program repair. Section 3 in-
troduces JaRFly. Section 4 details the dataset of real-world defects
used in our study and our methodology for creating high-quality
test suites. Section 5 empirically evaluates four automated program
repair techniques with respect to the quality of the patches they
produce on real-world defects. Section 6 discusses the implications
of our results, suggests future directions for research, and describes
the limitations of our choices of subject repair tools and defects.
Finally, Section 7 places our work in the context of related research,
and Section 8 summarizes our contributions.

2 AUTOMATED PROGRAM REPAIR

Automated program repair techniques’ goal is to convert an exist-
ing program that nearly satisfies a specification into one that fully
satisfies it. This can be done for many types of specifications, e.g.,
contracts [107], [131], a reference implementation [92], or, by far
most commonly, tests. This paper focuses on test-based program
repair.

Unfortunately, tests provide only a partial specification of the
desired behavior, and, as such, producing a patch that passes all
the tests might break other untested or undertested functionality.
Patches that pass all supplied tests but do not generalize to the
intended specification are said to be of low quality and to overfit
to the test suite used to produce them. Section 2.1 will provide
background on automated program repair, and Section 2.2 will
explain methods for evaluating patch quality.

http://JaRFly.cs.umass.edu/
http://JaRFly.cs.umass.edu/

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 3

2.1 G&V and synthesis-based repair

Automatic program repair techniques can be classified broadly into
two classes: (1) Generate-and-validate (G&V) techniques create
candidate patches (often via search-based software engineering [57])
and then validate them, typically through testing (e.g., [5], [29], [36],
[39], [68], [69], [83], [93], [101], [114], [120], [125], [132], [133].
(2) Synthesis-based techniques use constraints to build patches via
formal verification, inferred or programmer-provided contracts, or
specifications (e.g., [64], [107], [131]). Runtime program repair
techniques (e.g., [23], [24], [37], [38], [108] self-heal the execution
at runtime and typically do not produce source-code patches, and
are orthogonal to the above classification. This paper focuses on
G&V techniques, and neither synthesis-based nor runtime-repair
techniques. Prior work has considered overfitting in synthesis-based
repair techniques [76], albeit only on small programs. While both
synthesis-based and G&V techniques share high-level goals, they
work best in different settings, and have different limitations and
challenges.

Test-driven G&V techniques are a particularly interesting sub-
ject of exploration, as they (e.g., Clearview [108], GenProg, Par,
and Debroy and Wong [36]) have been shown to repair defects in
large, real-world legacy software. Meanwhile, formal specifications
and contracts are relatively rare in practice. Although new projects
appear to be increasingly adopting contracts [46], their penetration
into existing systems and languages remains limited. Few main-
tained contract implementations exist for widely-used languages
such as C. For example, in the Debian main repository, only 43
packages depended on Zope.Interfaces (by far the most popular
Python, contract-specific library in Debian) out of a total of 4,685
Python-related packages. For Ubuntu, 144 out of 5,594 Python-
related packages depended on Zope.Interfaces. Synthesis-based
techniques show great promise for new or safety-critical systems
written in suitable languages, and adequately enriched with specifi-
cations. However, the significance of defects in existing software
demands that research attention be paid at least in part to techniques
that address software quality in existing systems written in legacy
languages. Since legacy codebases are often idiosyncratic to the
point of not adhering to the specifications of their host language [15],
it might not be possible even to add contracts to such projects.

G&V repair works by generating multiple candidate patches that
might address a particular bug and then validating the candidates to
determine if they constitute a repair. In practice, the most common
form of validation is testing. A G&V approach’s input is therefore
a program and a set of test cases. The passing tests validate the
correct, required behavior, and the failing tests identify the buggy
behavior to be repaired. G&V approaches differ in how they choose
which locations to modify, which modifications are permitted, and
how the candidates are evaluated, among others.

We chose four representative G&V repair techniques for our
analysis. There are many existing G&V repair techniques, often
with similar performance. However, an underlying theory of G&V
repair suggests that analysis of a set of these techniques should
generalize to others [132]. Section 6 discusses the generalizability
of our results.

GenProg [77], [133] uses a genetic programming heuristic [71]
to search the space of candidate repairs. Given a buggy program and
a set of tests, GenProg generates a population of random patches
by using statistical fault localization to identify which program
elements to change (those that execute only on failing test cases
or on both failing and passing text cases), and selecting elements

from elsewhere in the program to use as candidate patch code. The
fitness of each patch is computed by applying it to the input program
and running the result on the input test cases; a weighted sum of
the count of passed tests informs a random selection of a subset
of the population to propagate into the next iteration. These patch
candidates are recombined and mutated to form new candidates
until either a candidate causes the input program to pass all tests,
or a preset time or resource limit is reached. Because genetic
programming is a random search technique, GenProg is typically
run multiple times on different random seeds to repair a bug.

Par [69] performs search by applying 12 fix templates —
automatic program editing scripts created based on the fix pat-
terns identified from developer fixes — in the locations they can be
applied that are also identified as likely faulty by statistical fault
localization.

SimFix [63], a more recent technique, mines code patterns
(similar to Par templates) from frequently occurring code changes
from developer-written patches. Then, in the project with the defect
SimFix is attempting to repair, SimFix identifies code snippets that
are similar to the code SimFix has localized the defect to. SimFix
defines similarity using structural properties, variable names, and
method names. SimFix ranks the code snippets by the number
of times the mined patterns have to be applied to the snippet to
replace the buggy code. SimFix then selects the snippets (one at a
time) from the ranked list of top 100 snippets, applies the pattern-
based modifications to produce a candidate patch, and validates the
patch against tests created using a test purification technique [139].
While the original paper describes SimFix stopping once a patch
that passes the test suite is found [63], the implementation [62]
generates multiple patches that pass at least one of the purified
originally-failing tests. In this paper, we use all the found patches
for our analyses.

TrpAutoRepair [111] uses random search instead of genetic
programming to traverse the search space of candidate solutions. In-
stead of running an entire test suite for every patch, TrpAutoRepair
uses heuristics to select the most informative test cases first, and
stops running the suite once a test fails. TrpAutoRepair limits its
patches to a single edit. It is more efficient than GenProg in terms
of time and test case evaluations [111]. The same approach is also
called RSRepair [112], and we refer to the original algorithm name
in this paper.

There are four key challenges that G&V must overcome to find
patches [132]. First, there are many places in the buggy program
that may be changed. The set of program locations that may be
changed and the probability that any one of them is changed at a
given time describes the fault space of a particular program repair
problem. GenProg, Par, SimFix, and TrpAutoRepair tackle this chal-
lenge by using existing fault localization techniques to identify good
repair candidates. SimFix increases the accuracy of GZoltar [22],
an existing fault localization technique, by using a test purification
technique [139] that removes assertions unrelated to the bug from
the failing tests, as well as source code statements related to those
unrelated assertions. Second, there are many ways to change poten-
tially faulty code in an attempt to fix it. This describes the fix space
of a particular program repair problem. GenProg and TrpAutoRe-
pair tackle this challenge using the observation that programs are
often repetitive [10], [51] and logic implemented with a bug in one
place is likely to be implemented correctly elsewhere in the same
program. GenProg and TrpAutoRepair therefore limit the code
changes to deleting and copying constructs from elsewhere in the
same program. Par instantiates a set of repair templates constructed

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

based on a manual inspection of a large set of developer edits to
open source projects. SimFix similarly uses templates mined from
developer-written patches, also limiting code changes to snippets
from the same program which are similar structurally, or through
variable or method names, to the code being replaced. Third, there
are many ways to edit the code snippets identified by the fix space
so as to patch the bug. These edits, called mutation operators, define
the repair strategy. GenProg and TrpAutoRepair use three mutation
operators, selected uniformly at random, append candidate snippet,
replace the buggy region with the candidate snippet, and delete the
buggy region. GenProg also allows for a crossover operator that
combines parts of two candidate snippets. Par uses 12 mutation
operators, chosen uniformly at random, each one corresponding
to its 12 fix templates. SimFix uses the code patterns mined from
the existing developer-written patches and selects the candidate
snippets that requires fewer modifications using the mined code
patterns. Fourth, selecting the tests to be executed to evaluate a
candidate patch defines a repair technique’s test strategy. GenProg
and Par sample 10% of the tests using random sampling for internal
computations, and only the full test suite for promising candidates.
TrpAutoRepair uses heuristics to select the most informative test
cases first, and stops running the suite once a test fails. SimFix exe-
cutes all the failing tests first and, only if all those pass, continues
to execute the passing tests.

GenProg, Par, SimFix, and TrpAutoRepair share sufficient com-
mon features to allow consistent empirical and theoretical compar-
isons. This allows us to focus on particular experimental concerns
and mitigates the threat that unrelated differences between the algo-
rithms confound the results.

2.2 Evaluating repair quality

In 2013, Brun et al. [20] demonstrated that automated program
repair is prone to producing patches that overfit to the test suites it
has access to. Within the space of possible program modifications,
many programs (and, thus, patches) exist that pass all the supplied
tests. While some of these programs encode the desired behav-
ior for all possible inputs, many fail to encode desired behavior
on at least some inputs not represented by the tests. Those other
programs fail to generalize to the unwritten, intended specification
and result in low-quality patches. This phenomenon of automated
program repair producing patches that satisfy the partial specifi-
cation of the supplied test suite, but failing to generalize is called
overfitting [122].

Since then, research has measured the degree to which G&V
patches overfit and what factors affect that overfitting on small C
programs [122], how often G&V patches disagree with developer-
written patches [114], how often overfitting happens in Java re-
pair [42], [90], the space of possible patches and the concentration
of correct ones [87], and so on. Further, research has attempted to
improve on the quality of the patches produced by using semantic
search to increase the granularity of repair [68], condition synthe-
sis [86], learning patch generation patterns from human-written
code [88], and automated test case generation [135]. Other research
has found that overfitting is not unique to G&V C repair, with
synthesis-based repair also overfitting to the supplied partial specifi-
cation [76]. Even when repair uses manually-written contracts as
the desired behavior specification, which are more complete than
tests, it still overfits, producing correct patches for only 59% of the
defects [107].

There are two established methods for evaluating quality of
program repair, using an independent test suite not used during the

construction of the repair [20], [122], and manual inspection [90],
[114], typically for equivalence with a developer-written patch
(though manual inspection has been used to measure how maintain-
able the patches are [50] and how likely developers are to accept
them [69]). The two methodologies are complementary. Intuitively,
the methodology that uses an independent test suite is more ob-
jective, whereas manual inspection is more subjective and can be
subject to subconscious bias, especially if the inspectors are authors
of one of the techniques being evaluated. A recent study found that
manual-inspection-based quality evaluation can be imprecise [72],
while independent-test-suite-based quality evaluation is inherently
partial, as the independent test is a partial specification. As a re-
sult, manual evaluation of quality can imprecisely label patches as
correct and incorrect. The test-suite-based evaluation cannot be
imprecise, but may be incomplete, potentially mislabeling some
patches as correct but never labeling a correct patch as incorrect.

In this paper, we select to use the test-suite-based quality evalu-
ation method because (1) it is objective and reproducible in a fully
automated manner, (2) can scale to complex, real-world defects
in real-world systems, which are the focus of our work (whereas
manual inspection would require using the projects’ developers with
intricate project knowledge). Since this methodology necessarily
underestimates overfitting (it never labels a correct patch as incor-
rect) [72], our findings of overfitting are, at worst, conservative.

3 JARFLY: THE JAVA REPAIR FRAMEWORK

This section describes JaRFly, our open-source framework for im-
plementing techniques for automatic search-based improvement
(or genetic improvement) of Java programs. Genetic improvement
approaches reuse existing software as input to metaheuristic search.
The search goal is to identify variants of that input software that
improve on the software according to some criterion (e.g., function-
ality, performance) [109].

JaRFly is publicly available at http://JaRFly.cs.umass.
edu/ to facilitate researchers and practitioners building search-
based improvement approaches for Java programs. The imple-
mentation includes reimplementations of GenProg [77] and Trp-
AutoRepair [111] for Java (original releases of these tools were
for C programs), and releases the first public reimplementation of
Par [69].

JaRFly’s novelty and utility lie in the way it decouples the
fundamental components of metaheuristic search and allows devel-
opers to specify just those fundamental components, taking care
of the rest of the approach implementation. These components are
problem representation, fitness function, mutation operators, and
search strategy [58]. JaRFly provides high-level extension points
for each of these fundamental components, which differentiates it
from prior frameworks that support implementing Java-based repair
techniques [91].

JaRFly simplifies the process of implementing genetic improve-
ment approaches for Java programs. JaRFly handles parsing Java
programs into a specified representation, and metaheuristic search
over variants within that representation using specified mutation
operators, search strategy, and fitness function. JaRFly allows the
user to specify these representations, mutation operators, search
strategies, and fitness functions by selecting from a set of already
implemented options, or by extending with new versions via explicit
extension points.

JaRFly improves on prior frameworks that support implement-
ing Java-based repair techniques [91] by making these fundamen-
tal components explicit and supporting their extensions explicitly,

http://JaRFly.cs.umass.edu/
http://JaRFly.cs.umass.edu/

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 5

while also handling a wider range of Java programs. For example,
JaRFly can operate over the Closure compiler subject program from
the Defects4J dataset, whereas prior frameworks cannot [91]. We
next detail JaRFly’s four fundamental components of metaheuristic
search.

Problem Representation. The first and perhaps most fundamental
design choice in applying metaheuristic search to a software en-
gineering problem is deciding how to represent the problem such
that it is amenable to symbolic manipulation. The most common
representation choice in genetic improvement applications is the
patch representation, in which an individual candidate solution is
represented as a variable-length sequence of edits to the original pro-
gram [77], [78]. In addition to Java, variations of and improvements
on this representation choice can target Python [2] and C [103],
[104] programs. Prior to the development of the patch represen-
tation, genetic-programming-based program repair operated over
problems represented as a fixed-length weighted path through the
program represented as an abstract syntax tree [48], [133]; as is
typical in metaheuristic search, representation choice influences
search success and efficiency [78]. By making this representation
an explicit choice, and extension point, JaRFly enables developers
to both pay proper attention to the choice of representation and to
evaluate multiple representation choices.

JaRFly’s Representation interface exports functionality for
manipulating and evaluating a candidate solution in the context
of a search-based program improvement approach. This includes
support for

1) querying variant-specific localization information,
2) evaluating fitness, such as serializing a variant to disk and com-

piling it, or running one or more test cases against a given vari-
ant, tasks common to most genetic improvement approaches,
depending on fitness function, and

3) assessing the validity of and applying mutation operators to
the particular variant.

To that end, JaRFly’s Representation is parameterized by a
mutation interface that provides functionality for editing arbitrary
Java programs.

JaRFly provides prebuilt implementations of (1) an abstract
superclass that supports caching and serialization of common
representation-independent intermediate data, such as a fitness
cache, and (2) a classic patch representation for program repair
problems in Java. The currently-implemented patch representation
is a variable-length list of indivisible mutation operators, such as
“Insert statement S at location L”; mutating this representation adds
a new edit to the end of the current variant. It is straightforward
to implement other choices without requiring major refactoring of
the framework. For example, Oliveira et al. [103], [104] propose
a novel patch-based representation that decouples the fault, oper-
ator, and fix spaces, with implications for crossover (but no other
components of the search strategy); this could be achieved for Java
in our framework by specializing the present patch-based represen-
tation (specifically the getGenome method) and implementing the
new crossover operators in dedicated methods in the Population
module.

Fitness Function. Applying metaheuristic search to a software en-
gineering problem requires a fitness function to determine the fitness
of a variant. Thus, this function must operate on the representation.
JaRFly makes the choice of the fitness function explicit.

The most typical fitness function in modern repair approaches
is a weighted sum of the number of test cases passed by a pro-

gram variant. Sampling can reduce the computational cost of this
fitness function [47]. Alternative fitness functions for program re-
pair typically combine test cases with another objective, such as
in a multi-objective search strategy. These alternative objectives
can include a variant’s similarity to patches in a dataset of previous
developer-written patches [75], or its intermediate semantic distance
according to a set of learned invariants over intermediate program
state [40], [47] or according to memory values [34] from either the
original program or the rest of the population.

JaRFly provides an extensible, representation-agnostic Fitness
module that, by default, implements and provides configuration
options for multiple common fitness strategies from the genetic im-
provement literature. These strategies include test execution at dif-
ferent levels of JUnit granularity (individual JUnit method, or entire
JUnit class), and configuration options for test sampling (including
generational versus individual sampling, and a configurable sam-
ple rate), and test selection (sampled, heuristically modeled [111],
[132], or test to first failure). JaRFly’s Fitness interface is agnos-
tic to the underlying testing methodology, so it is not limited to
using JUnit for fitness calculation. Fitness provides, by default,
the idea of a (potentially dynamically-updated) test model, support-
ing experiments and extensions focused on more intelligent test
selection and prioritization. JaRFly, moreover, extends (in a non-
default branch) Fitness to evaluate and provide additional values,
such as an experimental diversity-based metric [40], in the con-
text of a multi-objective search strategy (NSGA-II [35]) extended
from the Search module. Other measures of fitness, such as via
comparison to a historical dataset of patches [75], can similarly ex-
tend Fitness.testFitness for more specialized, non-test-driven
metrics.

Mutation Operators. Metaheuristic search requires a set of
manipulation operators applicable to the selected representation.
JaRFly provides the EditOperation abstraction, parameterized by
a rewriter engine that can modify arbitrary Java programs. JaRFly’s
default implementation uses the Eclipse JDT API to perform rewrit-
ing. An EditOperation is instantiated at a particular (abstract)
Location, and may contain one or more abstract Holes that need
to be filled in with suitable code. For example, an Append operation
can be instantiated at any statement in a Java location; it has a single
Hole that must be filled in by a piece of code that may be appended
there.

JaRFly implements all statement-level edit operations used
by GenProg and TrpAutoRepair and all Par fix templates, includ-
ing the optional ones from https://sites.google.com/site/
autofixhkust/home/, not included in the original paper [69].
Both GenProg and TrpAutoRepair construct modifications by
reusing code from elsewhere in the program under repair. The
Representation enforces this type of modification, providing in-
formation on legal Locations and code bank code that can be used
to fill in Holes for a particular variant. Meanwhile Par uses 12 fix
templates — automatic program editing scripts created based on the
fix patterns identified from developer-written patches. As with the
coarser-grained operations used by GenProg and TrpAutoRepair,
the Representation provides the possible values to fill in Holes
in Par’s fix templates, such as which variable should be checked for
null in the null-check-insertion template.

Some EditOperations cannot be applied at all Locations.
For example, an Append operation cannot insert code that refer-
ences out-of-scope variables, or the result will not compile. JaRFly
creates EditOperations via a helper JavaEditFactory, which

https://sites.google.com/site/autofixhkust/home/
https://sites.google.com/site/autofixhkust/home/

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

queries a variant via its Representation interface for informa-
tion to determine the edit’s legality. JaRFly implements a set of
static semantic checks that can identify edits that will be rejected
by the compiler. Previous work demonstrated that static semantic
checks improve efficiency in genetic programming repair for C
programs [78]. Java’s compiler is substantially stricter than most C
compilers, requiring commensurately more complex static checks
to avoid invalid mutations.

Although we use the released SimFix implementation for our
experiments, the mutation operators considered by SimFix could be
implemented further as abstractions or extensions of this paradigm.
Mutation operators are typically associated with weights that inform
their selection and application. In the default implemented algo-
rithms, these weights are fixed throughout the search strategy. How-
ever, they are customizable by design, such as via a machine-learned
model of edit frequency drawn from historical, developer-written
patches [88], [123].

Search Strategy. The choices of representation and mutation oper-
ators represent the space of possible variants metaheuristic search
can explore, and the choice of fitness function represents the ob-
jective shape of that search space. The search strategy defines the
path through the space the metaheuristic search uses to optimize the
objective.

Common search strategies include local search, random search,
and genetic programming. JaRFly’s Search interface provides a
representation-agnostic extension point for implementing search
strategies, and implements five strategies, to facilitate comparison
and customization. The implemented strategies are a random search,
a weighted brute force single-edit search, an oracle search, a ge-
netic programming heuristic, and NGSA-II [35], a multi-objective
evolutionary search strategy.

In addition to these four fundamental components of the meta-
heuristic search, JaRFly includes implementation and support for
other common and important interfaces and utilities for search-
based program modification:

Population Manipulation. JaRFly implements crossover and se-
lection strategies common in source-level evolutionary program
manipulation. The implemented crossover strategies include one-
point crossover, uniform crossover [133], and crossback crossover
(crossover with the original unmodified representation) [133]. The
one implemented selection strategy is tournament selection with
configurable tournament sizes. JaRFly contains extension points to
make adding new crossover and selection operators straightforward
and independent of representation. Additionally, JaRFly allows
setting the proportional mutation rate as a top-level configuration
option.

Localization and Code Bank Management. Fault and fix local-
ization are common concerns in search-based program repair or
improvement. JaRFly implements common weighted path localiza-
tion with configurable path weights, facilities for reading in arbitrary
localization data from a file, and an abstract class for implementing
alternative localization strategies [113]. JaRFly uses the JaCoCo
coverage library to compute coverage for the purposes of fault
localization [44].

These facilities support significant (but straightforward) cus-
tomization and investigation of all elements of a meta-heuristic
search technique for program transformation. Implementing differ-
ent metaheuristic search strategies (regardless of the search goal)
requires specialization of a single Search class; investigating or
isolating the effect of particular search features (such as selection,

crossover or mutation rate, or the numerous other parameters in-
fluencing the traversal strategy in a genetic algorithm) requires the
specialization of single methods, or the modification of existing
top-level configuration options. These choices enable significant on-
going experimentation and specialization of the search component
of a search-based or genetic improvement program modification
strategy, without requiring reimplementation or modification of
how programs under modification are represented, manipulated, or
evaluated.

4 REAL-WORLD DEFECTS AND TEST SUITES

Our study requires real-world defects in real-world projects. Further,
our study requires that each of these projects have not one but two
high-quality test suites. Section 4.1 describes the Defects4J [66]
dataset we use in our study, and Section 4.2 describes the methodol-
ogy we followed to create test suites.

A replication package, with all data, code, and instructions
necessary to replicate our results is available at http://github.
com/LASER-UMASS/JavaRepair-replication-package/.

4.1 Real-world defects

We used Defects4J version 1.1.0, which consists of 357 defects
made by developers during the development of five real-world open-
source Java projects. Figure 1 describes the Defects4J defects and
the projects they come from. Each defect comes with (1) one defec-
tive and one developer-repaired version of the project code; (2) a
set of developer-written tests, all of which pass on the developer-
repaired version and at least one of which evidences the defect by
failing on the defective version; and (3) the infrastructure to generate
tests using modern automated test generation tools. Each defective
version is a real-world version of the code. This version, submitted
to the project’s version-control repository by the developers of the
subject project, fails on at least one test. The developer-repaired ver-
sion is a subsequent version of that code submitted by the project’s
developers to the project’s version-control repository that passes all
the tests, minimized to only include changes relevant to repairing
the defect.

Defects4J has been used to evaluate program repair in terms
of how often techniques produce patches [41], what types of de-
fects the techniques are able to patch [98], and the quality of the
produced patches [72], [90], [136], [137]. These existing evalua-
tions that measure patch quality use manual inspection [72], [90],
[136] or automatically-generated evaluation test suites [72], [135],
[137]. While manual inspection is subjective and could be biased,
low-quality evaluation test suites could inaccurately measure qual-
ity [72]. In this paper, we develop a methodology for producing
high-quality evaluation test suites, allowing us to measure patch
quality more accurately; we also go beyond simply measuring qual-
ity and study what factors influence patch quality of automated
program repair.

4.2 Quality-evaluating test suites

To objectively measure the quality of a generated repair, we need
two independent test suites that specify the desired behavior of the
program being repaired. One test suite can be used by the automated
program repair techniques to produce a patch for a defect. The
second, independent test suite is called the evaluation test suite;
this test suite is used to measure the patch’s quality. As already
mentioned, each Defects4J defect comes with a developer-written

http://github.com/LASER-UMASS/JavaRepair-replication-package/
http://github.com/LASER-UMASS/JavaRepair-replication-package/

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 7

identifier project description KLoC defects tests test KLoC

Chart JFreeChart Framework to create charts 85 26 222 42
Closure Closure Compiler JavaScript compiler 85 133 3,353 75
Lang Apache Commons Lang Extensions to the Java Lang API 19 65 173 31
Math Apache Commons Math Library of mathematical utilities 84 106 212 50
Time Joda-Time Date- and time-processing library 29 27 2,599 50

total 302 357 6,559 248

Fig. 1. The 357 defect dataset created from five real-world projects in the Defects4J version 1.1.0 benchmark. We used SLOCCount to measure the lines of
code (KLoC) counts (https://www.dwheeler.com/sloccount/). The tests and test KLoC columns refer to the developer-written tests.

test suite that evidences the defect. To create the second test suite,
for each defect, we generated test inputs using an off-the-shelf
automated test input generator, and using the developer-repaired
code as an oracle of correct behavior. We generated the second
test suites only for the 106 defects for which at least one of the
four automated repair techniques we evaluate produced a patch.
(Figure 3 in Section 5.1 will describe these patch results.)

This repair-quality methodology is only effective if the eval-
uation test suite is of high-quality. Coverage is widely-used in
industry to estimate test-suite quality [61]. Using statement-level
code coverage as a proxy for test suite quality, our goal was to
generate, for each defect, a high-coverage test suite, thus implying
that a big portion of the functionality of the inspected class is being
evaluated. Specifically, we focused on the statement coverage of
the methods and classes modified by the developer-written patch
and designed a test generation methodology aimed to maximize
that coverage. Ideally, we want the evaluation test suite to have
perfect coverage, but modern automated test generation tools can-
not achieve perfect coverage on all large real-world programs, in
part because of limitations of such tools such as possible infinite
recursion in the creation process or impreciseness of method sig-
natures such as Java generics [49]. Thus, we set as our goal to
generate, for each defect, a test suite that achieves 100% coverage
on all developer-modified methods, and at least 80% coverage on
all developer-modified classes. The choice of coverage criteria is
a compromise between a reasonable measure of covering all the
developer changes and the modern automated test generation tools’
ability to generate high-coverage test suites.

We used the patched version of the code to generate the eval-
uation test suite because it guarantees that this test suite covers at
least one way of repairing the defect. An alternative to using the
defective version of the code would not provide such a guarantee.
Our choice might cause the evaluation test suites to more accu-
rately measure the quality of patches that are structurally similar
to the human-written patches, and would bias that measurement
more favorably toward patches whose behavior agrees with the
human-written patches. Future work could attempt to mitigate
these concerns by combining test suites generated using multiple
versions of the code, and by using alternate information for ora-
cles, such as natural language specifications [17], [53], [97], [124],
other implementations of the same specification [92], or even the
unpatched version [135], [141], though each of those approaches
would introduce its own limitations.

We compared the effectiveness of two modern off-the-shelf
automated test generators Defects4J supports, Randoop [105] and
EvoSuite [49], in a controlled fashion, and found that EvoSuite
consistently produced test suites with higher coverage on Defects4J
defects’ code. This finding is consistent with prior analyses [118].

Accordingly, we elected to use EvoSuite as our test suite generator.
EvoSuite uses randomness in its test generation and continues

to generate tests up to a given time budget, so we experimented
with different ways to run EvoSuite to maximize coverage. We ran
EvoSuite using branch coverage as its target maximization search
criterion (the default option) twenty times per defect, with different
seeds, ten times for 3 minutes and ten times for 30 minutes. We
found low variance in the coverage produced by the generated test
suites: the 3-minute test suites had a variance in statement coverage
of 0.6% and the 30-minute test suites of 0.8%. We also found that
the improvement between the mean statement coverage of the 3-
minute test suites and the mean statement coverage of the 30-minute
test suites was low (from 68% to 72%), suggesting that longer time
budgets would not significantly improve coverage. Merging ten
3-minute test suites resulted in higher statement coverage than a
single average 30-minute test suite (77% vs. 72%). Finally, merging
ten 30-minute test suites resulted in 81% statement coverage, on
average, the highest we observed. We thus used the ten merged 30-
minute test suites as preferred combination mechanism to optimize
test suite coverage.

We followed the following automated process for generating
the test suites: For each defect, we ran EvoSuite (v1.0.3) ten times
(on different seeds) with a 30-minute time budget and merged the
ten resulting test suites, removing duplicate tests. We then checked
if the resulting test suite covered 100% of the statements in the
developer-modified methods, and at least 80% of the statements
in each of the developer-modified classes. For 34 out of the 106
defects, this algorithm generated test suites that satisfied the cover-
age criterion. In the course of our study, a new version of EvoSuite
was released. We attempted to augment the test suites by using
this later version of EvoSuite (v1.0.6), but this new version did not
produce better-coverage test suites than v1.0.3 on its own. However,
using statement-coverage as the target maximization search crite-
rion (instead of the default branch coverage) did produce test suites
that, when combined with the previous v1.0.3-generated test suites,
improved coverage. This process resulted in test suites that satisfied
the coverage criterion for a total of 62 defects (11 Chart, 6 Closure,
11 Lang, 30 Math, and 4 Time defects).

We then examined the generated test suites that met one, but not
both of the coverage criteria and attempted to manually augment
them to fully meet the other criterion. Examining these cases,
we found that EvoSuite often was unable to cover statements that
required the use of specific hard-to-generate literals present in the
code. For example, covering some portions of code from the Closure
project (a JavaScript compiler) required tests that take as input
specific strings of JavaScript source code, such as an inline comment.
Meanwhile covering some exceptional Lang code required specific
strings to trigger the exceptions. The probability of the random

https://www.dwheeler.com/sloccount/

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

defect set
of statement

mean mediandefects coverage of
patch-modified

at least
106

methods 90.8% 100.0%
one patch classes 87.2% 96.3%

adequate
71

methods 100.0% 100.0%
test suite classes 96.7% 98.7%

Fig. 2. Statement coverage of the EvoSuite-generated test suites for the 106
Defects4J defects patched by at least one repair technique in our study, and for
the 71-defect subset for which our generated test suites covered 100% of all
developer-modified methods and at least 80% of all developer-modified classes.

strings generated and selected by EvoSuite to match the necessary
strings to cover these portions of the code is negligibly small. We,
therefore, manually examined the source code and created test cases
using the necessary literals. Augmenting the EvoSuite-generated
test suites with these manually-written tests resulted in high quality
test suites for 9 more defects (1 Chart, 3 Closure, 4 Lang, and
2 Math, defects) that satisfied the coverage criteria.

In total, this process produced test suites that satisfied the cover-
age criterion for 71 of the 106 defects (12 Chart, 9 Closure, 14 Lang,
32 Math, and 4 Time defects). The test suites varied in size from 59
to 7,164 tests, with the mean test suite containing 1,194 tests and
the median test suite 648 tests.

We restrict our study to these 71 defects. An additional 5 defects
had 80% or higher coverage on the developer-modified classes, but
did not have 100% coverage on the developer-modified methods.
The mean statement coverage for the developer-modified classes
for these 71 defects is 96.7% and the median is 98.7% (with means
and medians for the modified methods both 100%, as required by
the coverage criterion). Figure 2 summarizes these statistics for the
71 defects used in our study and the 106 defects patched by at least
one repair technique.

We examined the 35 defects for which our process failed to
generate adequate test suites to understand why this happened. We
found that the uncovered code was either unreachable, the default
code at the end of a switch statement, a branch of a complex set
of nested if statements, exception declarations or catch clauses for
exceptions not thrown by local code (but possibly thrown elsewhere).
Unfortunately, because significant domain knowledge and project-
specific understanding are necessary to determine whether such
code is reachable and to construct an input that would execute this
code, we could not definitively eliminate it as unreachable, and
elected to omit these defects from our study.

5 EMPIRICAL MEASUREMENTS OF REPAIR QUALITY

We evaluate G&V repair via a series of controlled experiments
using the Defects4J dataset described in Section 4.1 and test suites
described in Section 4.2. Section 5.1 outlines our experimental
procedure for repairing defects using GenProg, Par, SimFix, and
TrpAutoRepair and reports how successful the techniques are at
producing patches on real-world defects. Section 5.2 examines the
quality of those patches and measures which factors affect patch
quality. Finally, Section 5.3 explores methods for improving patch
quality.

5.1 Ability to produce a patch

Research Question 1: Do G&V techniques produce patches
for real-world Java defects?

We used each repair technique to attempt to repair each of the 357
defects in the Defects4J benchmark providing the developer-written
test suite to all the techniques to guide repair. For GenProg, Par,
and TrpAutoRepair, which select random mutation operators to
generate a patch, we attempt to repair each defect 20 times with a
timeout of 4 hours each time, using a different seed each time, for
a total of 357×20 = 7,140 attempted repairs, per repair technique.
For SimFix, which is deterministic, we attempt the repair once for
each defect using the default timeout of 5 hours, for a total of 357
attempted repairs. This results in a grand total of 7,140×3+357 =
21,777 repair attempts. We ran these techniques using a cluster
of 50 compute nodes, each with a Xeon E5-2680 v4 CPU with 28
cores (2 processors, 14 cores each) running at 2.40GHz. Each node
had 128GB of RAM and 200GB of local SSD disk. We launched
multiple repair attempts in parallel, each requesting 2 cores on one
compute node. The 20 repair attempts provided a compromise
between the likely ability to make statistically significant findings,
and the computational resources necessary to run our experiments.
The computational requirements are significant: Repairing a single
defect 20 times with a 4-hour timeout can take 80 hours per defect
per repair technique, and 10 CPU-years for 357 defects and 3 repair
techniques.

The repair techniques’ parameters affect how they attempt
to repair defects. For GenProg, Par, and TrpAutoRepair (imple-
mented in JaRFly), we used the parameters from prior work that
evaluates these techniques on C programs [69], [77], [111]. We
set the population size (PopSize) to 40 and the maximum num-
ber of generations to 10 for all three techniques. For GenProg
and TrpAutoRepair, we uniformly equally weighted the muta-
tion operators append, replace, and delete. For Par, we uni-
formly equally weighted the mutation operators FUNREP, PARREP,
PARADD, PARREM, EXPREP, EXPADD, EXPREM, NULLCHECK, OBJINIT,
RANGECHECK, SIZECHECK, and CASTCHECK. For GenProg and Par,
we set SampleFit to 10% of the test suite. For fault localization,
all three techniques apply a simple weighting scheme to assign
values to statements based on their execution by passing and failing
tests. For Par and TrpAutoRepair, we set negativePathWeight
to 1.0 and positivePathWeight to 0.1, based on prior work [69],
[111]. For GenProg, we set negativePathWeight to 0.35 and
positivePathWeight to 0.65 [78]. For all remaining parameters,
we use their default values from prior work [69], [77], [111]. For
SimFix, we use its open-source implementation with its default
configuration [62].

We describe the complete set of param-
eters at https://github.com/LASER-UMASS/
JavaRepair-replication-package/wiki/
Configuration-parameter-details/.

Figure 3(a) reports the results of the repair attempts. GenProg
patches 49 out of 357 defects (6 Chart, 15 Closure, 9 Lang, 18 Math,
and 1 Time) and produces a total of 585 patches, out of which 255
are unique. Par patches 38 out of 357 defects (3 Chart, 12 Closure,
7 Lang, 15 Math, and 1 Time), and produces a total of 288 patches,
out of which 107 are unique. SimFix patches 68 out of 357 defects
(8 Chart, 15 Closure, 13 Lang, 27 Math, and 5 Time) and produces
a total of 76 patches, out of which 73 are unique. TrpAutoRepair

https://github.com/LASER-UMASS/JavaRepair-replication-package/wiki/Configuration-parameter-details/
https://github.com/LASER-UMASS/JavaRepair-replication-package/wiki/Configuration-parameter-details/
https://github.com/LASER-UMASS/JavaRepair-replication-package/wiki/Configuration-parameter-details/

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 9

patches defects
technique total unique patched

GenProg 585 (8.2%) 255 49 (13.7%)
Par 288 (4.0%) 107 38 (10.6%)
SimFix 76 (21.3%) 73 68 (19.0%)
TRPAutoRepair 513 (7.2%) 199 44 (12.3%)

total 1,462 (6.7%) 634 106 (29.7%)

(a) Produced patches

48
33

15

72

1
0

20
40
60
80

100
120

C
h
a

rt

C
lo

s
u

re

L
a

n
g

M
a
th

T
im

e

project

p
a

tc
h

 c
o
u

n
t

GenProg

8
32

10
29

1
0

20
40
60
80

100
120

C
h
a

rt

C
lo

s
u

re

L
a

n
g

M
a
th

T
im

e

project

p
a

tc
h

 c
o
u

n
t

Par

9 15 15
29

5
0

20
40
60
80

100
120

C
h
a

rt

C
lo

s
u

re

L
a

n
g

M
a
th

T
im

e
project

p
a

tc
h

 c
o
u

n
t

SimFix

37 32
17

46

1
0

20
40
60
80

100
120

C
h
a

rt

C
lo

s
u

re

L
a

n
g

M
a
th

T
im

e

project
p
a

tc
h

 c
o
u

n
t

TRPAutoRepair

(b) Unique patch distributions, per technique

Fig. 3. (a) GenProg, Par, SimFix, and TrpAutoRepair produce patches 1,462
times (6.7%) out of the 21,777 attempts. At least one technique can produce
a patch for 106 (29.7%) of the 357 real-world defects. (b) The distributions of
unique patches produced by the four techniques are similarly shaped.

patches 44 out of 357 defects (7 Chart, 12 Closure, 8 Lang, 16 Math,
and 1 Time) and produces a total of 513 patches, out of which 199
are unique. Overall, at least one technique produced at least one
patch for 106 out of the 357 defects. All techniques produced at
least one patch for 12 defects. SimFix most often produced patches
(21.3% of the attempts) and produced patches for the most defects
(19.0%). Figure 3(b) shows the distributions of unique patches, per
project, generated by each of the four techniques.

Compared to prior studies on C defects [122], [79], [111], the
Java repair mechanisms produce patches on fewer repair attempts
and for fewer defects. On C defects, GenProg produced patches
for between 47% (ManyBugs defect dataset) and 60% (IntroClass
defect dataset) and TrpAutoRepair produced patches for between
52% (ManyBugs) and 57% (IntroClass) defects. It is not surprising
that on real-world defects, the rate is lower. Our findings are also
consistent with prior work applying G&V repair to Java defects,
which found techniques to produce patches for 9.8%–15.6% of the
defects [90]. In a prior study on Java defects, Par produced patches
for 22.7% of the defects [69]. While that study’s defects also came
from real-world software projects, it is possible that the complexity
of Defects4J defects results in the lower patch rates for Par. Some
of the prior study’s defects came from Lang and Math, projects
that are also part of Defects4J (though a different set of defects),
and our results on those projects are similar to those in the prior
study [69]. Even though SimFix patches more defects (19.0%) than
other techniques, the fraction of defects patched by SimFix is still
much lower (19.0% vs. 47%) than that those obtained using repair
techniques for C defects.

Answer to Research Question 1: We conclude that G&V
techniques do produce patches on real-world Java defects,
though the rate of patch production is lower than on C defects.

patch quality 100%-quality
technique minimum mean median maximum patches

GenProg 64.8% 95.7% 98.4% 100.0% 24.3%
Par 64.8% 96.1% 98.5% 100.0% 13.8%
SimFix 65.0% 96.3% 99.9% 100.0% 46.1%
TrpAutoRepair 64.8% 96.4% 98.4% 100.0% 19.5%

GenProg

patch quality (%)

p
a

tc
h

 c
o
u

n
t

60 70 80 90 100

0
3

0
6
0

9
0

1
2
0

2 3 4

18 22

120
Par

patch quality (%)

p
a

tc
h

 c
o
u

n
t

60 70 80 90 100

0
2

0
4

0
6

0
8

0

1

10 7

62

SimFix

patch quality (%)

p
a

tc
h

 c
o
u

n
t

70 80 90 100

0
2

0
4

0
6

0
8

0

1 1 1 1 3 3

42

TRPAutoRepair

patch quality (%)

p
a

tc
h

 c
o
u

n
t

60 70 80 90 100

0
4

0
8
0

1
2

0

1 1 4 8
17

102

Fig. 4. The quality of the patches the repair techniques generated when using
the developer-written test suite varied from 64.8% to 100.0%. The distributions
of patch quality is skewed toward the 100% end. On average, 74.1% (GenProg:
75.7%, Par: 86.2%, SimFix: 53.9% and Trp: 80.5%) of the patches failed at least
one test.

5.2 Patch Quality

Section 5.1 showed that G&V techniques are able to patch 29.7% of
the real-world defects in Defects4J. This section explores the quality
of the produced patches and measures the factors that affect it. These
experiments are based on the 71 defects for which we are able to
generate high-quality evaluation test suites (recall Section 4.2).
These 71 defects are a subset of the 106 defects for which at least
one repair technique produced at least one patch (recall Figure 2).

5.2.1 Patch overfitting

Research Question 2: How often and how much do the
patches produced by G&V techniques overfit to the developer-
written test suite and fail to generalize to the evaluation test
suite, and thus ultimately to the program specification?

Methodology: To measure the quality of a produced patch, we start
with the defective code version, apply the patch to that code, and
execute the generated evaluation test suite. We call the total number
of tests executed in the evaluation test suite Ttotal and the number of
tests the patched version passes Tpass. The quality of a patch is Tpass

Ttotal
,

as defined by prior work [122]. A patch that passes all the tests in
the evaluation test suite has 100% patch quality.

We also measure the quality of the defective code version by
executing the evaluation test suite prior to applying the patch. This
allows us to identify the quality improvement due to the patch.
Results: First, we consider the quality of the patches automated
program repair techniques produce. Figure 4 shows the distributions
of the quality of the patches produced by each technique. Due to
the nature of the space of possible patches, all four techniques pro-
duce the same patch for some defects, which, for example, caused
the minimum exhibited quality patch to be identical for all four
techniques. Overall, 74.1% of the patches (GenProg: 75.7%, Par:
86.2%, SimFix: 53.9%, and TrpAutoRepair: 80.5%), on average,
failed at least one test, thus overfitting to the specification and fail-
ing to fully repair the defect. The mean quality of the patches varied
from 95.7% to 96.4%. The relatively high fraction is not necessarily
a proportional indication of the quality of repair: Defective code
versions already pass 98.3% of the tests, on average, so a patch that
passes 96.0% of the tests may not even be an improvement over the
defective version.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

GenProg Par
33 defects 25 defects

−40

−20

0

20

40

C
h

a
rt

1
C

h
a

rt
1

3
C

h
a

rt
2

5
C

h
a

rt
2

6
C

h
a

rt
3

C
h

a
rt

5
C

lo
s
u

re
1

0
2

C
lo

s
u

re
1

3
C

lo
s
u

re
2

1
C

lo
s
u

re
2

2
L

a
n

g
1

0
L

a
n

g
2

4
L

a
n

g
3

9
L

a
n

g
5

1
L

a
n

g
5

9
L

a
n

g
6

3
L

a
n

g
7

M
a

th
1

8
M

a
th

2
0

M
a

th
2

4
M

a
th

2
8

M
a

th
2

9
M

a
th

4
9

M
a

th
5

3
M

a
th

7
M

a
th

7
3

M
a

th
8

M
a

th
8

0
M

a
th

8
2

M
a

th
8

4
M

a
th

8
5

M
a

th
9

5
T

im
e

1
9

defect

p
a

tc
h

 q
u

a
lit

y
 i
m

p
ro

ve
m

e
n

t
(%

)

−40

−20

0

20

40

C
h

a
rt

1

C
h

a
rt

1
3

C
h

a
rt

7

C
lo

s
u

re
1

3

C
lo

s
u

re
2

1

C
lo

s
u

re
2

2

L
a

n
g

1
0

L
a

n
g

3
3

L
a

n
g

4
4

L
a

n
g

5
1

L
a

n
g

5
8

L
a

n
g

5
9

L
a

n
g

6
3

M
a

th
2

M
a

th
2

8

M
a

th
2

9

M
a

th
4

9

M
a

th
5

M
a

th
6

2

M
a

th
7

5

M
a

th
8

M
a

th
8

0

M
a

th
8

2

M
a

th
8

5

T
im

e
7

defect

p
a

tc
h

 q
u

a
lit

y
 i
m

p
ro

ve
m

e
n

t
(%

)

SimFix TrpAutoRepair
48 defects 31 defects

−40

−20

0

20

40

C
h

a
rt

1
C

h
a

rt
1

2
C

h
a

rt
1

8
C

h
a

rt
2

0
C

h
a

rt
2

2
C

h
a

rt
2

5
C

h
a

rt
3

C
h

a
rt

7
C

lo
s
u

re
1

4
C

lo
s
u

re
2

1
C

lo
s
u

re
2

6
C

lo
s
u

re
3

9
C

lo
s
u

re
7

3
L

a
n

g
1

0
L

a
n

g
3

3
L

a
n

g
3

9
L

a
n

g
4

1
L

a
n

g
4

4
L

a
n

g
4

5
L

a
n

g
5

0
L

a
n

g
5

8
L

a
n

g
6

0
L

a
n

g
6

3
M

a
th

1
M

a
th

2
0

M
a

th
2

8
M

a
th

3
3

M
a

th
3

5
M

a
th

4
1

M
a

th
5

M
a

th
5

3
M

a
th

5
7

M
a

th
5

9
M

a
th

6
3

M
a

th
7

0
M

a
th

7
2

M
a

th
7

3
M

a
th

7
4

M
a

th
7

5
M

a
th

7
9

M
a

th
8

M
a

th
8

0
M

a
th

8
5

M
a

th
8

8
M

a
th

9
8

T
im

e
1

3
T

im
e

3
T

im
e

7

defect

p
a

tc
h

 q
u

a
lit

y
 i
m

p
ro

ve
m

e
n

t
(%

)

−40

−20

0

20

40

C
h

a
rt

1

C
h

a
rt

1
3

C
h

a
rt

2
1

C
h

a
rt

2
5

C
h

a
rt

2
6

C
h

a
rt

3

C
h

a
rt

5

C
lo

s
u

re
1

3

C
lo

s
u

re
2

1

C
lo

s
u

re
2

2

C
lo

s
u

re
8

6

L
a

n
g

1
0

L
a

n
g

3
9

L
a

n
g

4
5

L
a

n
g

5
9

L
a

n
g

6
3

L
a

n
g

7

M
a

th
1

8

M
a

th
2

0

M
a

th
2

4

M
a

th
2

8

M
a

th
2

9

M
a

th
4

9

M
a

th
7

M
a

th
7

3

M
a

th
8

M
a

th
8

0

M
a

th
8

2

M
a

th
8

5

M
a

th
9

5

T
im

e
1

9

defect
p

a
tc

h
 q

u
a

lit
y
 i
m

p
ro

ve
m

e
n

t
(%

)

GenProg

33.3%

24.2%

42.5%

Par

20.0%

40.0%

40.0%

SimFix
% of defects

no change

improvement

reduction

TrpAutoRepair

32.3%

41.9%

25.8%

45.8%

16.7%

35.5%

change in quality due to patch
technique minimum mean median maximum

GenProg −30.9% −1.7% 0.0% 2.6%
Par −30.9% −2.8% 0.0% 1.5%
SimFix −24.9% 0.2% 0.0% 35.0%
TrpAutoRepair −30.9% −2.1% 0.0% 3.8%

Fig. 5. Patch overfitting. Change in quality between the defective version and the patched version of the code. The median patch neither improves nor decreases
quality. While more GenProg patches improve the quality than decrease it, the opposite is true for Par and TrpAutoRepair patches, and, on average, patches break
more functionality than they repair. The data presented are for the 45 defects with high-quality evaluation test suites, of which GenProg produced patches for 33, Par
for 25, and TrpAutoRepair for 31.

Accordingly, next, we consider whether patches improve
program quality. Figure 5 shows, for each of the patched defects,
the change in the quality between the defective version and the
patched version. A negative value implies that the patched version
failed more evaluation tests than the defective version. When
a technique produced multiple distinct patches for a defect, for
this comparison, we used the highest-quality patch. For GenProg,
33.3% of the defects’ patches improved the quality, 42.5% showed
no improvement, and the remaining 24.2% decreased quality. For
Par, 20.0% improved, 40.0% showed no improvement, and 40.0%
decreased quality. For SimFix, 45.8% improved, 35.5% showed
no improvement, and 16.7% decreased quality. For TrpAutoRepair,
32.3% improved, 25.8% showed no improvement, and 41.9%
decreased quality. For Par and TrpAutoRepair, more patches broke
behavior than repaired it, and the decrease in quality was, on
average, larger than the improvement. For all the techniques, the
majority (89 out of 137, 65.0%) of the patches decrease or fail to
improve quality, and more than a quarter (39 out of 137, 28.5%)
of the patches break even more tests than they fix.

These results are consistent with the previous findings obtained
using C repair techniques on small programs, where the median

GenProg patch passed only 75% (mean 68.7%) of the evaluation
test suite and the median TrpAutoRepair patch passed 75.0% of the
evaluation test suite (mean 72.1%) [122].

Answer to Research Question 2: We conclude that tool-
generated patches on real-world Java defects often overfit to
the test suite used in constructing the patch, often breaking
more functionality than they repair.

5.2.2 Test suite coverage and size

Research Question 3: How do the coverage and size of the
test suite used to produce the patch affect patch quality?

Intuition suggests that higher coverage test suites used to produce
patches should lead to better-quality patches. Prior work empirically
supports this intuition for G&V program repair [122]; however, that
work approximated the test suite coverage using test suite size and
was not on real-world defects. In this study, we use real-world

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 11

defects, measure the actual statement-level code coverage instead
of an estimate or proxy, and control for confounding factors, such
as test suite size, defects’ project, and the number of failing tests. In
fact, prior studies of test suites have identified test suite size as often
a confounding factor [67]. For our dataset, we found statistically
significant weak positive correlation (r = 0.14) between test suite
size and statement-level coverage of the developer-written test suite
on the defective code version. This is consistent with the prior
studies [67].

Methodology: To measure the relationship between test suite cov-
erage and repair quality, we attempted to create subsets of the
developer-written test suite of varying coverage while controlling
for test suite size, number of failing tests, and the defects themselves.
However, we found that there is very low variability in the coverage
of the individual tests and so we could not control for the test suite
size while varying coverage. Hence, we generate the subsets while
controlling for the number of failing tests and defects. Since test
suite coverage and test suite size are positively correlated, analyz-
ing their association with repair quality individually would not be
appropriate. Thus, we use multiple linear regression to identify the
relationship between two explanatory variables (test suite coverage
and test suite size) and a response variable (repair quality). Unlike
prior work [122], our methodology does not need to control for
the ratio of passing to failing tests because most of the Defects4J
defects have only a single failing test. (Section 5.2.3 will discuss
the lack of variability in the number of failing tests further.)

For this analysis, we considered the 71 defects for which we
created high-quality evaluation test suites. For each of the defects,
we created subsets of the developer-written test suite of varying
coverage. Each subset contains all the tests that evidence the defect,
and randomly selected subsets of the rest of the tests. We then
used the repair techniques to produce patches using these test suite
subsets (using the methodology from Section 5.1), and then com-
puted the quality of the patches produced for each defect using the
automatically-generated evaluation test suites. We excluded defects
for which we could not generate test suites with sufficient variability
in coverage, and, as before, for which we did not have sufficiently
high-quality evaluation test suites. We describe the details of our
methodology next.

To generate the test suite subsets for each defect, we first com-
pute the minimum and the maximum code coverage ratio of the
developer-written test suite of that defect. The minimum code cover-
age ratio (covmin) of a developer-written test suite is the statement
coverage on the defective code version of just those tests that fail
on the defective code version and pass on the developer-repaired
code version. We include all of these tests in every subset we gen-
erate, so their coverage is the minimum possible coverage. The
maximum code coverage ratio (covmax) is the statement coverage
on the defective code version of the entire developer-written test
suite (the largest possible subset). For example, for Chart 1, there
is 1 failing test and 245 passing tests that execute the developer-
modified class AbstractCategoryItemRenderer. The minimum
coverage, (covmin), for Chart 1 is the statement coverage of the
single failing test on the developer-modified class. This test covers
18 out of the 519 lines, (3.5%). The maximum coverage, (covmax),
for Chart 1 is the statement coverage of the full test suite (246 tests)
on the developer-modified class. This test suite covers 300 out of
the 519 lines, (57.8%).

We then compute the potential test suite coverage variabil-
ity as the difference between the minimum and the maximum:

∆cov = covmax− covmin. Defects whose ∆cov < 25% lack sufficient
variability in statement coverage to be used in this study, and we
discard them. In our study, we discarded 15 defects for this reason
(2 Chart, 1 Closure, 1 Lang and 11 Math) out of the 71 defects that
had at least one repair technique produce at least one patch and had
a high-quality evaluation test suite (recall Section 4.2).

For each of the 56 remaining defects, we chose five target cover-
age ratios evenly spaced between the minimum and the maximum:
covmin +

1
5 ∆cov, covmin +

2
5 ∆cov, covmin +

3
5 ∆cov, covmin +

4
5 ∆cov, and

covmin +∆cov = covmax.
We used these target ratios to create 25 distinct test suites, 5 for

each of the targets. For each target ratio c, we attempted to create
five distinct test suite subsets within a 5% margin of c. (Note that
there are typically multiple ways to achieve even covmax coverage.)
Each of the five test suite subsets started with all tests that fail on
the defective code version and pass on the developer-repaired code
version. We then iteratively attempted to add a uniformly randomly
selected passing test case, without replacement, one at a time, as
long as it did not make the subset’s coverage exceed the target by
more than 5%, stopping if the subset’s coverage was within 5%
of the target. If we attempted to add a test 500 times and failed
to reach the target, we stopped. For 11 of the 56 defects (2 Chart,
3 Closure, 1 Lang, and 5 Math), the sampling algorithm was unable
to generate five distinct test suite subsets for all of the targets, so we
discard these 11 defects. We consider the remaining 45 defects for
the analysis.

Finally, for each technique, we computed a multiple linear re-
gression considering patch quality as the dependent variable and
test suite coverage and size as independent variables.
Results: For each of the 45 defects, we had 25 test suite subsets,
and we attempted each repair 20 times using GenProg, Par, and
TrpAutoRepair on different seeds, and one time using SimFix. In
total, these 23,625 repair attempts produced 9,144 patches. Fig-
ure 6(a) shows the distribution of these patches. GenProg produced
at least one patch for 29 out of the 45 defects, Par 25, SimFix 34,
and TrpAutoRepair 29. (GenProg: 6 Chart, 2 Closure, 10 Lang,
10 Math, and, 1 Time; Par: 5 Chart, 1 Closure, 8 Lang, 10 Math,
and, 1 Time; SimFix: 6 Chart, 3 Closure, 8 Lang, 13 Math, and
4 Time; and TrpAutoRepair 6 Chart, 2 Closure, 10 Lang, 10 Math,
and, 1 Time.)

Figure 6(b) shows the statistics of the quality of the patches for
those defects, created using the varying-coverage test suites. The
quality varied, with GenProg even producing some patches that
failed all evaluation test cases. Overall, 75.2% of the patches, on
average, failed at least one test in the evaluation test suite.

Next, for each technique, we created a multiple linear regression
model to predict the quality of the patches based on the test suite
coverage and size. Figure 6(c) shows, for each technique, the
results of the regression model. All four fitted regression models
are strongly statistically significant (p < 0.001) though with low
R2 values. Test suite size was a statistically significant predictor
for patch quality for all four techniques, with larger test suites
leading to higher-quality patches; however, with an extremely small
effect size. Coverage was a less clear predictor: for TrpAutoRepair,
the association was not statistically significant (p > 0.1), and was
positive for GenProg and TrpAutoRepair, but negative for SimFix
and Par. We further detail each technique’s regression results next.

For GenProg, patch quality (on a 0–100 scale) is equal to
94.82−0.02(coverage)+0.02(size), where coverage is 100× the
fraction of code in the defective code version covered by the test
suite, and size is the normalized number of tests in the test suite

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

921

53

1049

1934

26
0

400
800

1200
1600
2000

C
h
a

rt

C
lo

s
u

re

L
a

n
g

M
a
th

T
im

e
project

p
a

tc
h

 c
o
u

n
t

GenProg

263
3

167

944

25
0

400
800

1200
1600
2000

C
h
a

rt

C
lo

s
u

re

L
a

n
g

M
a
th

T
im

e

project

p
a

tc
h

 c
o
u

n
t

Par

129 63
217 324

40
0

400
800

1200
1600
2000

C
h
a

rt

C
lo

s
u

re

L
a

n
g

M
a
th

T
im

e

project

p
a

tc
h

 c
o
u

n
t

SimFix

792

63

989
1117

25
0

400
800

1200
1600
2000

C
h
a

rt

C
lo

s
u

re

L
a

n
g

M
a
th

T
im

e

project

p
a

tc
h

 c
o
u

n
t

TrpAutoRepair

(a) Distribution of patches generated using varying-coverage test suites.

patch quality 100%-quality
technique minimum mean median maximum patches

GenProg 0.0% 94.8% 98.4% 100.0% 16.2%
Par 51.8% 91.2% 95.5% 100.0% 13.3%
SimFix 77.3% 98.4% 100.0% 100.0% 50.7%
TrpAutoRepair 62.9% 95.5% 99.0% 100.0% 19.0%

(b) Quality of patches generated using varying-coverage test suites.

technique model quality
p R2 test suite p

GenProg 7.2×10−13 0.013 size 6.7×10−13

coverage 8.5×10−4

Par 5.2×10−12 0.035 size 4.2×10−5

coverage 7.6×10−11

SimFix 4.0×10−16 0.086 size 2.7×10−7

coverage 1.3×10−15

TrpAutoRepair 6.9×10−5 0.0057 size 1.6×10−5

coverage 0.96

(c) Multiple linear regression relating coverage and size to patch quality.

Fig. 6. Test suite coverage and size. (a) Distribution of the number of patches
produced using developer-written test suite subsets of varying code coverage
on the defective code version. (b) The quality of the patches generated using
varying-coverage test suites varied from 0.0% to 100.0%. On average, 75.2%
(GenProg: 83.8%, Par: 86.7%, SimFix: 49.3%, and TrpAutoRepair: 81.0%) of
the patches failed at least one test. (c) A multiple linear regression reports that
test suite size and test suite coverage are strongly significantly associated with
patch quality (p < 0.001) except for coverage for TrpAutoRepair).

used to generate the patch. Thus, the quality of the patch produced
by GenProg decreases by 0.02% for each 1% increase in the test
suite coverage and increases by 0.02% for each additional test in the
test suite. While both associations of test suite coverage and size
with the patch quality were statistically significant (p < 0.001), the
magnitude is extremely small and the low R2 value indicates little
of the variability is explained. We conclude that test suite coverage
and test suite size are significant predictors of patch quality, but the
magnitude of the effect is extremely small, for GenProg.

For Par, the quality of the patch is equal to 91.18 −
0.10(coverage)+ 0.03(size). Thus, the quality of the patch pro-
duced by Par decreases by 0.10% for each 1% increase in the test
suite coverage and increases by 0.03% for each additional test in the
test suite. Again, while both associations of test suite coverage and
test suite size with patch quality are strongly statistically significant
(p < 0.001), the magnitude is extremely small and the low R2 value
indicates little of the variability is explained. We conclude that both
test suite coverage and test suite size are significant predictors of
patch quality, but the magnitude of the effect is extremely small, for
Par.

For SimFix, the quality of the patch is equal to 98.43−
0.04(coverage)+ 0.002(size). Thus, the quality of the patch pro-
duced by SimFix decreases by 0.04% for each 1% increase in the
test suite coverage and increases by 0.002% for each additional
test in the test suite. We observe strongly statistically significant
(p < 0.001) associations of test suite coverage and test suite size

with patch quality however, the magnitude is extremely small and
the low R2 value indicates little of the variability is explained. We
conclude that both test suite coverage and test suite size are signifi-
cant predictors of patch quality, but the magnitude of the effect is
extremely small, for SimFix.

For TrpAutoRepair, the quality of the patch is equal to
95.80+0.0003(coverage)+0.006(size). The equation implies that
the quality of the patch produced by TrpAutoRepair increases by
0.0003% for 1% increase in the test suite coverage and increases
by 0.006% for each additional test in test suite. The association of
test suite size with patch quality is strongly statistically significant
(p < 0.001), but that is not the case for test suite coverage. And,
again, the magnitude of the association is extremely small and the
low R2 value indicates little of the variability is explained. We con-
clude that test suite size is a significant predictor of patch quality, but
the magnitude of the effect is extremely small, for TrpAutoRepair.

Answer to Research Question 3: We conclude that, surpris-
ingly, both test suite size and test suite coverage have extremely
small but statistically significant correlations with patch quality
(positive for test suite size and negative for test suite coverage)
produced using automatic program repair techniques.

Previous findings for C program repair techniques [122] con-
sidered only test suite size and found that for both GenProg and
TrpAutoRepair, larger test suites improved patch quality.

5.2.3 Defect severity

Research Question 4: How does the number of tests that a
buggy program fails affect the degree to which the generated
patches overfit?

The number of failing tests that trigger the defect are likely to be
proportional to the number constraints that repair techniques need
to satisfy to generate a repair. The goal of this research question is
to measure the effect of the number of failing tests in the test suite
used for producing the patches on the quality of patches generated
using G&V techniques.

Methodology: To measure the effect of the number of failing tests
in the test suite used to guide repair, we selected those defects that
had at least 5 failing tests in the developer-written test suite and
for which we are able to create high-quality evaluation test suite
(recall Section 4.2). Unfortunately, there were only 5 such defects
in the 71-defect subset of Defects4J. For each of the five defects,
we created 21 test suites subsets. We did this by first computing
five evenly distributed target sizes s: 1

5 f , 2
5 f , 3

5 f , 4
5 f , and f , where

f is the number of failing tests in the developer-written test suite
(rounding to the nearest integer). Then, for each s (except s = f),
we created 5 test suite subsets by including every passing test from
the developer-written test suite, and uniformly randomly sampling,
without replacement, s of the failing tests. This created 20 test
suite subsets. We also included the entire developer test suite as a
representative of the s = f target, for a total of 21 test suite subsets.
We then used the four automated repair techniques to attempt to
patch the defects using each of the test suite subsets, following the
methodology described in Section 5.1. Our methodology controls
for the number of passing tests, unlike the prior study [122].

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 13

C
h
a
rt

1
C

h
a
rt

1
2

C
h
a
rt

1
3

C
h
a
rt

1
8

C
h
a
rt

2
0

C
h
a
rt

2
1

C
h
a
rt

2
2

C
h
a
rt

2
5

C
h
a
rt

2
6

C
h
a
rt

3
C

h
a
rt

5
C

h
a
rt

7
C

lo
s
u
re

1
0
2

C
lo

s
u
re

1
3

C
lo

s
u
re

1
4

C
lo

s
u
re

2
1

C
lo

s
u
re

2
2

C
lo

s
u
re

2
6

C
lo

s
u
re

3
9

C
lo

s
u
re

7
3

C
lo

s
u
re

8
6

L
a
n
g
1
0

L
a
n
g
2
4

L
a
n
g
3
3

L
a
n
g
3
9

L
a
n
g
4
1

L
a
n
g
4
4

L
a
n
g
4
5

L
a
n
g
5
0

L
a
n
g
5
1

L
a
n
g
5
8

L
a
n
g
5
9

L
a
n
g
6
0

L
a
n
g
6
3

L
a
n
g
7

M
a
th

1
M

a
th

1
8

M
a
th

2
M

a
th

2
0

M
a
th

2
4

M
a
th

2
8

M
a
th

2
9

M
a
th

3
3

M
a
th

3
5

M
a
th

4
1

M
a
th

4
9

M
a
th

5
M

a
th

5
3

M
a
th

5
7

M
a
th

5
9

M
a
th

6
2

M
a
th

6
3

M
a
th

7
M

a
th

7
0

M
a
th

7
2

M
a
th

7
3

M
a
th

7
4

M
a
th

7
5

M
a
th

7
9

M
a
th

8
M

a
th

8
0

M
a
th

8
2

M
a
th

8
4

M
a
th

8
5

M
a
th

8
8

M
a
th

9
5

M
a
th

9
8

T
im

e
1
3

T
im

e
1
9

T
im

e
3

T
im

e
7

defect

fa
ili

n
g
 t
e
s
t
c
o
u
n
t

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

(a)

●●

●

●●

●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●● ●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●

●●●

●

●

●●

●

●● ●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●

●●●

●

●

●●

●

●●

●●●

●

●

●●

●

●● ●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●●

●●●

●

●

●●

●

●●

●●●

●

●

●●

●

●●
●●●●

75

80

85

90

95

100

0.2 0.4 0.6 0.8 1.0
normalized failing test count

p
a

tc
h

 q
u

a
lit

y
 (

%
)

technique ● GenProg TrpAutoRepair

(b)

Fig. 7. Defect severity. (a) The distribution of the number of failing tests in the 71 defects for which at least one repair technique produces at least one patch and has a
high-quality evaluation test suite. (b) Linear regression between patch quality and the number of failing tests and Pearson’s correlation show statistically significant
positive correlations for GenProg and TrpAutoRepair.

Both patch quality and the number of failing tests in the test suite
used to guide repair are continuous variables, so we measure the
association between these two variables using the Pearson correla-
tion coefficient. This is typical for measuring the linear relationship
between two continuous random variables.

Results: Figure 7(a) shows the frequency distribution of failing tests
across the 71 defects for which at least one of the four techniques
produced at least one patch, and for which we were able to create a
high-quality evaluation test suite. Of these 71 defects, only 5 defects,
Chart 22, Chart 26, Closure 26, Closure 86, and Time 3, have at
least five failing tests.

Figure 7(b) shows, for each technique, the quality of the patches
produced, as a function of the fraction of the failing tests in the
test suite used to guide repair. For GenProg and TrpAutoRepair,
we observe statistically significant (p < 0.05) positive correlations
(GenProg: r = 0.18, p = 0.006; TrpAutoRepair: r = 0.19 p =
0.008) between patch quality and the number of failing tests in the
test suite. The 95% confidence interval for both techniques was
[0.05,0.30].

Par did not produce any patches for any of the 5 defects con-
sidered for this analysis. Simfix only produced three patches and
did not patch any of the 5 defects when using partial failing tests.
Analyzing the execution logs of SimFix revealed that it was not
able to localize the bug using partial failing tests. This suggests
that fault localization strategy used by repair techniques could be
a confounding factor when measuring the effect of the number of
failing tests on patch quality. (Recall that SimFix and JaRFly use
different fault localization techniques.)

Answer to Research Question 4: We conclude that the num-
ber of tests that a buggy program fails has a small but statis-
tically significant positive effect on the quality of the patches
produced using automatic program repair techniques and that
this finding depends on the fault localization strategy used by
the repair techniques.

5.2.4 Test suite provenance

Research Question 5: How does the test suite provenance
(whether it is written by developers or generated automatically)
influence patch quality?

Prior work has suggested that using automatic test generation might
improve program repair quality by increasing the coverage of the
test suite used to produce the repair [122], [135], [141]. Augment-
ing a developer-written test suite with automatically-generated tests
requires an oracle that specifies the expected test outputs. The un-
patched program can be used as that oracle [135], [141], but that
enforces the assumption that the patch should avoid changing any
behavior not explicitly exhibited by the failing tests. Other imple-
mentations of the same specification could similarly be used as an
oracle [92], but this is only possible when multiple implementations
exist (e.g., if repairing a browser and the expected behavior can be
observed in an independent browser implementation) and requires
defects in the implementations to be independent, which is often not
the case in practice [70]. Finally, oracles can perhaps be extracted
from comments or natural language specifications, for example with
Swami [97], Toradacu [53], Jdoctor [17], or @tComment [124].

However, our earlier study found that even when a perfect ora-
cle exists, using automatically-generated tests for program repair
resulted in much lower quality patches than using developer-written
tests (about 50% vs. about 80% quality) on small, student-written
programs [122]. Thus, this research question sets out to evaluate the
effectiveness of using tests generated using EvoSuite as described
in Section 4.2 to produce patches using G&V repair.

Methodology: In this experiment, we compared the patches gener-
ated using developer-written test suites from Section 5.1 to patches
generated using the EvoSuite-generated test suites. A technical chal-
lenge in executing repair techniques using EvoSuite-generated tests
is a potential incompatibility between the bytecode instrumentation
of EvoSuite-generated tests with the bytecode instrumentation done
by code-coverage-measuring tools employed by repair techniques
for fault localization. JaRFly uses JaCoCo [59] for fault localiza-
tion and resolves instrumentation conflicts by updating the runtime
settings of EvoSuite-generated tests (following official EvoSuite

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

technique test suite generated defects patch quality 100%-quality
patches patched minimum mean median maximum patches

GenProg
developer 158 (21.4%) 29 (78.4%) 77.4% 94.9% 98.0% 100.0% 17.8%
EvoSuite 98 (13.2%) 14 (37.8%) 6.3% 65.3% 54.3% 100.0% 8.2%

Par
developer 75 (10.1%) 20 (54.1%) 98.1% 98.4% 98.1% 99.7% 0.0%
EvoSuite 17 (2.3%) 2 (5.4%) 97.2% 99.6% 99.9% 100.0% 41.2%

TrpAutoRepair
developer 128 (17.3%) 30 (81.1%) 77.4% 96.8% 98.1% 100.0% 24.6%
EvoSuite 103 (13.9%) 17 (45.9%) 6.3% 65.2% 54.3% 100.0% 10.4%

(a) Patching results for the 37 Defects4J defects whose developer-written and EvoSuite-generated test suites have at least one failing test each.
C

h
a

rt
1

C
h

a
rt

5
C

h
a

rt
2

1
C

h
a

rt
2

5
C

h
a

rt
2

6
C

lo
s
u

re
1

9
C

lo
s
u

re
2

1
C

lo
s
u

re
2

2
C

lo
s
u

re
8

6
L

a
n

g
7

L
a

n
g

1
0

L
a

n
g

2
4

L
a

n
g

3
3

L
a

n
g

3
9

L
a

n
g

4
3

L
a

n
g

4
4

L
a

n
g

4
5

L
a

n
g

5
8

L
a

n
g

5
9

L
a

n
g

6
3

M
a

th
5

M
a

th
8

M
a

th
1

8
M

a
th

2
4

M
a

th
2

8
M

a
th

2
9

M
a

th
4

0
M

a
th

4
9

M
a

th
5

0
M

a
th

5
3

M
a

th
7

3
M

a
th

7
8

M
a

th
8

0
M

a
th

8
1

M
a

th
8

5
M

a
th

9
5

T
im

e
1

9

Developer

defect

fa
ili

n
g
 t
e
s
t
c
o
u
n
t

0
6

1
2

2
1

3
0

3
9

C
h

a
rt

1
C

h
a

rt
2

1
C

h
a

rt
2

5
C

h
a

rt
2

6
C

h
a

rt
5

C
lo

s
u

re
1

9
C

lo
s
u

re
2

1
C

lo
s
u

re
2

2
C

lo
s
u

re
8

6
L

a
n

g
1

0
L

a
n

g
2

4
L

a
n

g
3

3
L

a
n

g
3

9
L

a
n

g
4

3
L

a
n

g
4

4
L

a
n

g
4

5
L

a
n

g
5

8
L

a
n

g
5

9
L

a
n

g
6

3
L

a
n

g
7

M
a

th
1

8
M

a
th

2
4

M
a

th
2

8
M

a
th

2
9

M
a

th
4

0
M

a
th

4
9

M
a

th
5

M
a

th
5

0
M

a
th

5
3

M
a

th
7

3
M

a
th

7
8

M
a

th
8

M
a

th
8

0
M

a
th

8
1

M
a

th
8

5
M

a
th

9
5

T
im

e
1

9

EvoSuite

defect

fa
ili

n
g
 t
e
s
t
c
o
u
n
t

0
6

1
2

2
1

3
0

3
9

(b) Distributions of failing tests in the 37 Defects4J defects’ test suites.

GenProg Par TrpAutoRepair
12 defects, 166 patches 2 defects, 35 patches 13 defects, 153 patches

developer EvoSuite

p
a
tc

h
 q

u
a
lit

y
 (

%
)

0
1
0

2
5

4
0

5
5

7
0

8
5

1
0
0

p = 1.3×10−11

δ estimate = 0.61 (large)
95% CI = [0.45,0.72]

●●●

●●

developer EvoSuite

p
a
tc

h
 q

u
a
lit

y
 (

%
)

0
1
0

2
5

4
0

5
5

7
0

8
5

1
0
0

p = 5.3×10−5

δ estimate = −0.76 (large)
95% CI = [−0.96,−0.04]

●
●●

●

●

●

●

●●

●
●

developer EvoSuite

p
a
tc

h
 q

u
a
lit

y
 (

%
)

0
1
0

2
5

4
0

5
5

7
0

8
5

1
0
0

p = 5.8×10−11

δ estimate = 0.63 (large)
95% CI = [0.48,0.75]

(c) Patch quality comparison on the in-common (patched using both types of test suites) defect populations.

Fig. 8. Test suite provenance. (a) Using EvoSuite-generated test suites, automated program repair techniques were able to produce patches for 37 of the the
68 defects. (b) The EvoSuite-generated test suites typically have more failing tests than the developer-written ones. (c) The box-and-whisker plots compare patch
quality on the in-common defect populations, showing the maximum, top quartile, median, bottom quartile, and minimum values, with the mean as a red diamond.
The quality of patches produced by GenProg and TrpAutoRepair using the EvoSuite-generated test suites is statistically significantly (Mann-Whitney U test) lower that
those produced using developer-written test suites. For Par, the effect is reversed.

documentation1). The EvoSuite-generated tests are compatible
with JaCoCo, Cobertura [27], Clover [8], and PIT [30] code cover-
age tools, but not with GZoltar [22]. Unfortunately, SimFix uses
GZoltar, and so could not be included in this experiment. For
GenProg, Par, and TrpAutoRepair, as before, we used the developer-
written patches as the oracle of expected behavior.

To control for the differences in the defects, properly measuring

1. http://www.evosuite.org/documentation/measuring-code-coverage/

the association between test suite provenance and patch quality
should be done using defects that can be patched using both kinds of
test suites. If the set of defects patched using developer-written test
suites differs from the set of defects patched using the automatically-
generated test suites (as was the case in the earlier study [122]),
then the defects can be a confounding factor in the experiment. For
example, it is possible that more of the defects patched using one
of the types of test suites are easier to produce high-quality patches

http://www.evosuite.org/documentation/measuring-code-coverage/

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 15

for, unfairly biasing the results.
We thus started with the 68 defects for which at least one of

the three repair techniques (GenProg, Par, and TrpAutoRepair)
was able to produce a patch when using the developer-written test
suites to guide repair, and first discarded those defects for which
the EvoSuite-generated test suites did not evidence the defect. To
evidence the defect, at least one test in the test suite has to fail
on the defective code version. (By definition, all automatically-
generated tests pass on the developer-patched version, since that
version is the oracle for those tests.) For 31 out of the 68 defects,
automatically-generated test suites did not evidence the defect. This
left 37 defects (5 Chart, 4 Closure, 11 Lang, 16 Math, and 1 Time).
We next executed each of the three repair techniques on each of
the 37 defects using the EvoSuite-generated test suites, using the
methodology from Section 5.1, thus executing 37×20 = 740 repair
attempts per technique. Note that comparing repair techniques’ be-
havior with different test suites on these 37 defects is unfair because
one of the criteria they satisfied to be selected is that at least one
repair technique produced at least one patch for the defect using the
developer-written test suite. Thus, for each technique, we identified
the set of defects that were patched both using developer-written
and using automatically-generated test suites. We call these the
in-common populations. Note that these populations are, potentially,
different for each technique.

To compare the quality of the patches on the in-common patch
populations, we use the nonparametric Mann-Whitney U test. We
choose this test because the two populations may not be from a
normal distribution. This test measures the likelihood that the
two populations came from the same underlying distribution. We
compute Cliff’s delta’s δ estimate to capture the magnitude and
direction of the estimated difference between the two populations.
We also compute the 95% confidence interval (CI) of the δ estimate.
Results: Figure 8 summarizes our results. Figure 8(a) reports data
for the 37 defects for which both test suites evidence the defect. As
expected, because of the aforementioned bias in the selection of
the 37 defects, using EvoSuite-generated test suites produced fewer
patches and patches for fewer defects than using developer-written
test suites. Using developer-written test suites produced a patch
on between 10.1% and 21.4% executions, while using EvoSuite-
generated test suites produced a patch on between 2.3% and 13.9%
of the executions. Using developer-written test suites produced a
patch for between 54.1% and 81.1% of the defects, while using
EvoSuite-generated test suites produced a patch for between 5.4%
and 45.9% of the defects.

In addition to the bias in defect selection, another possible rea-
son that EvoSuite-generated test suites resulted in fewer patches
could be differences in the test suites. Figure 8(b) shows the dis-
tributions of the number of failing (defect-evidencing) tests across
the 37 defects for the two types of test suites. EvoSuite-generated
test suites typically had more failing tests, perhaps contributing to it
being more difficult to produce patches when using those test suites.
Prior work has shown that having a larger number of failing tests
correlated with lower patch production [98], [122].

We compared the quality of the patches produced using the
two types of test suites on the in-common populations. Figure 8(c)
shows that for GenProg and TrpAutoRepair, the mean and median
quality of the patches produced using the developer-written test
suites are higher than of those produced using EvoSuite-generated
test suites. These differences are statistically significant (Mann-
Whitney U test, p = 1.3×10−11 for GenProg, and p = 5.8×10−11

for TrpAutoRepair). The δ estimate computed using Cliff’s delta

shows a large effect size for the median patch quality of the patches
produced using EvoSuite-generated test suites being lower for Gen-
Prog and TrpAutoRepair. The 95% CI does not spans 0 for both
techniques, indicating that, with 95% probability, the two popula-
tions are likely to have different distributions.

For GenProg, this comparison is on the 12 in-common defects
(Chart 5, Closure 22, Lang 43, Math 24, Math 40, Math 49, Math 50,
Math 53, Math 73, Math 80, Math 81, and Time 19). On these
defects, GenProg produced 73 patches using developer-written test
suites and 93 patches using EvoSuite-generated test suites (166
patches total). For TrpAutoRepair, this comparison is on the 13
in-common defects (Chart 5, Closure 22, Closure 86, Lang 43,
Lang 45, Math 24, Math 40, Math 49, Math 50, Math 73, Math 80,
Math 81, and Time 19). On these defects, TrpAutoRepair produced
57 patches using developer-written test suites and 96 patches using
EvoSuite-generated test suites (153 patches total).

Because the results for GenProg and TrpAutoRepair are derived
from 12 and 13 defects, respectively, there is hope that these results
will generalize to other defects. The same cannot be said for Par.
Par produced patches using both types of test suites for only 2 out
of the 37 defects (Closure 22 and Math 50). Figure 8(c) shows
that the mean and median quality of the patches produced using
the developer-written test suites are lower than those produced
using EvoSuite-generated test suites. This result is statistically
significant because Par produced 18 patches using developer-written
test suites and 17 patches using EvoSuite-generated test suites, with
p = 5.3×10−5 and the 95% CI interval does not span 0. However,
while significant for these 2 defects, we cannot claim (nor do we
believe that) this result generalizes to all defects from this 2-defect
sample.

Our finding is consistent with the earlier finding [122] that prove-
nance has a significant effect on repair quality, and that for GenProg
and TrpAutoRepair, developer-written test suites lead to higher
quality pathces. Surprisingly, the finding is opposite for Par (which
was not part of the earlier study), with automatically-generated
tests leading to higher-quality patches. Our study improves on the
earlier work in many ways: We control for the defects in the two
populations being compared, we use real-world defects, and we
use a state-of-the-art test suite generator with a rigorous test suite
generation methodology. The earlier study used a different gener-
ator (KLEE [21]) and aimed to achieve 100% code coverage on a
reference implementation, but the generated test suites were small.

Answer to Research Question 5: We conclude that test suite
provenance has a significant effect on repair quality, though
the effect may differ for different techniques. For GenProg and
TrpAutoRepair, patches created using automatically-generated
tests had lower quality than those created using developer-
written test suites. For a small, perhaps non-representative
number of defects, Par-generated patches showed the opposite
effect.

5.3 Mitigating Overfitting

Research Question 6: Can overfitting be mitigated by exploit-
ing randomness in the repair process? Do different random
seeds overfit in different ways?

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

patch quality
technique minimum mean median maximum 100%-quality patches

GenProg 78.7% 96.7% 100.0% 100.0% 54.9%
GenProg (n-version) 75.8% 95.7% 99.9% 100.0% 50.0%

Par 82.4% 97.7% 100.0% 100.0% 76.5%
Par (n-version) 82.4% 97.6% 100.0% 100.0% 66.7%

TrpAutoRepair 80.1% 97.7% 100.0% 100.0% 59.3%
TrpAutoRepair (n-version) 75.8% 96.3% 100.0% 100.0% 56.0%

GenProg Par TrpAutoRepair
30 defects, 254 patches 9 defects, 77 patches 25 defects, 197 patches

●●

●●●●

●
●

●

●

●●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●●●●

●

GenProg GenProg (n−version)

p
a

tc
h

 q
u

a
lit

y
 (

%
)

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

p = 0.51
δ estimate = 0.07 (negligible)
95% CI = [−0.14, 0.27]

●●●

●

●

●

●

●

●●●●●●●●

●

●

Par Par (n−version)

p
a

tc
h

 q
u

a
lit

y
 (

%
)

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

p = 0.56
δ estimate = 0.09 (negligible)
95% CI = [−0.24, 0.41]

●

●●●●

●

●

●

●

●●

●●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

TRPAutoRepair TRPAutoRepair (n−version)

p
a

tc
h

 q
u

a
lit

y
 (

%
)

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

p = 0.52
δ estimate = 0.07 (negligible)
95% CI = [−0.16, 0.30]

Fig. 9. The box-and-whisker plots compare the quality of the individual and n-version programs made up of those patches, with the mean as a red diamond. The p
values (Mann-Whitney U test) suggest that there is no statistically significant difference in the quality of n-version and individual programs. We measure the effect size
using Cliff’s Delta test. For the given dataset, n-version programs perform negligibly worse (indicated by the δ estimate) than individual versions for all the three
techniques however, the 95% confidence interval spans 0 for all techniques suggesting that, with 95% probability, the quality of n-version program is likely to be same
as individual program.

Because automated program repair aims to solve an underspeci-
fied problem, there are often many possible patches. This is the
fundamental issue behind the repair quality problem. The partial
specification — a test suite — fails to distinguish between patches
that pass the tests and implement the desired functionality and the
patches that pass the tests but fail to implement the desired function-
ality not encoded by the partial specification. The search space of
possible patches is large [87] and navigating it in a way to improve
the probability of finding a high-quality patch [68], [87], [88], [135]
is at the heart of solving the repair quality problem.

An interesting observation is that the diversity of the patches
produced in such a way, even by a single technique, may be used
to improve the overall quality of a patch [122]. In essense, if each
of the generated patches is wrong on the unspecified part of the
specification, but is wrong in a different way, perhaps they can be
combined in a way to produce a higher-quality patch. Specifically, a
super patch that simulates the individual patches and then executes
the plurality behavior may avoid the pitfalls of individual patches.

This is a form of n-version programming, and it is subject to
the same constraints as n-version programming. Specifically, hu-
man program repair usually lacks the scale of diversity required
to effectively combine programs into n-versions and meaningfully
improve quality; correlations in faults of human-written programs
prevent a quality improvement beyond some level [70]. Thus, test-
ing if this approach works for automatically generated patches is, in
some sense, a measure of whether human-written and automatically-
generated patches differ in their diversity profiles.

Combining complex programs with side effects and potential
resource use and contention, including simulating the execution of

a set of patches in parallel, can be problematic. For this study, we
separate the question of how to combine patches from the question
of whether it might be worthwhile to combine patches. We answer
the latter question. We simply say that if, given a set of patches for
a defect, the majority of the patches passes an evaluation test, then
it is possible that the n-version combination would pass that test. If
the overall quality of an n-version patch across the entire evaluation
test suite is higher than that of the individual patches, then perhaps
it is worthwhile to attempt to combine them. Conversely, if the
n-version patch quality is no better than the individual patches,
combining is unlikely to improve quality.

Methodology: In Section 5.1, we described executing the four
repair techniques on all 357 Defects4J defects using the developer-
written test suites, with 20 different seeds per defect for GenProg,
Par, and TrpAutoRepair, and once for SimFix. This produced 634
unique patches (255 by GenProg, 107 by Par, 73 by SimFix, and
199 by TrpAutoRepair, recall Figure 3). For each technique, we
identified the defects for which that technique produced at least
3 distinct patches. For these defects, we then evaluated how the
potential n-version patch would perform by executing the evalua-
tion test suite on each patch and considering the n-version to pass
the test if the strict majority of the patches passed the test. For
GenProg, 30 defects qualified for this experiment, 9 for Par, and
25 for TrpAutoRepair. SimFix could not be used for this analysis
because it did not generate more than two distinct patches for any
defect.

To compare the quality of the n-version and individual programs,
we use the nonparametric Mann-Whitney U test. We choose this
test because our data may not be from a normal distribution. We

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 17

compute Cliff’s delta’s delta estimate to capture the magnitude and
direction of the estimated difference between the two populations.
We also compute the 95% confidence interval (CI) of the δ estimate.

Results: Figure 9 compares the quality of the n-version patches to
the individual patches that make up those n-version patches. The
Mann-Whitney U test indicates the differences between the patch
quality of the individual patches and the n-version patches are not
statistically significant and the δ estimate suggests the differences
are negligible.

Answer to Research Question 6: We conclude that auto-
mated program repair techniques’ patches lack the diversity
necessary to employ an approach based on n-versioning to
improve patch quality.

Our finding is consistent with the prior study for relatively high-
quality patches [122]. However, the earlier study found that when
patch quality was low (e.g., because of a low-quality test suite
being used to repair the defect) the patch diversity may have been
sufficient to improve quality [122]. This study does not explore
that part of the question because the patches we observe for the
Defects4J defects tend to be of relatively-high quality.

6 DISCUSSION

Our main finding is that patches produced by Java G&V automated
program repair techniques often overfit to the tests used to produce
those patches. The most important implication of our work is that
research is needed into improving program repair techniques to pro-
duce higher-quality patches, or at least identifying and discarding
lower-quality ones. Researchers can use the patch quality evalua-
tion methodology and high-quality test suites we have developed
to evaluate their techniques on real-world defects and demonstrate
improvements over the state-of-the-art within this important dimen-
sion.

We observed that test-suite size correlates with higher-quality
patches, and test-suite coverage correlates with lower-quality
patches, though both effects are extremely small. These findings,
surprisingly, suggest that improving test suites used for repair is
unlikely to lead to better patches. Future research should explore if
there exists other guidance developers can use to improve their test
suites to help program repair produce higher-quality patches.

Controlling for fault localization strategy, the number of tests
a buggy program fails is positively correlated with higher-quality
patches. On its face, this is surprising because fixing a larger number
of failing tests usually requires fixing more behavior (although it is
certainly possible for a small bug to cause many tests to fail, and for
a large bug to cause only one test to fail). The key observation here is
that fault localization can be a confounding factor. A larger number
of failing tests can help fault localization identify the correct place to
repair a defect, improving the chances the technique can produce a
patch. A recent study similarly found that fault localization can have
a significant effect on repair quality [3]. In our study, we observe
cases in which SimFix failed to localize a defect, and therefore
failed to produce a patch when given fewer failing tests, but was
able to do so with more failing tests (recall Section 5.2.3).

We found that human-written tests are, usually, better for pro-
gram repair than automatically-generated ones. This suggests that
automatically generating tests to augment the developer-written

tests may not help program repair. However, the method of gener-
ating the tests likely matters, and future research should study that
relationship, in particular, exploring whether new approaches that
generate tests from natural-language specifications [17], [97] are
helpful.

Finally, we observed that Java G&V repair techniques produce
patches for more defects than C G&V repair techniques. Future
research could target understanding the differences in the languages
that cause this and improving the fix space and repair strategies
used by the Java repair techniques.

6.1 Limitations

Research questions each impose specific requirements on the bench-
mark that can be used effectively to evaluate them. It is challenging
for a single benchmark to satisfy these requirements for a diverse
set of research questions, such as the ones we have explored in
this paper. For example, the majority of the Defects4J defects have
a single failing test, which makes it hard to study the association
between the number of failing tests and patch quality. Similarly,
a lack of variability in the statement coverage of the developer-
written tests makes it hard to study the relationships that involve
that coverage. These shortcomings in the benchmark may reduce
the strength of the results. Nevertheless, this paper has developed
a methodology that can be applied to other benchmarks to further
study these questions.

JaRFly, our Java Repair framework, can help future researchers
build new Java repair techniques. Our methodology for creating
high-quality evaluation test-suites can be used to do so for new
benchmarks, and the instances of evaluation test suites we have
created for Defects4J can be used for future evaluations on that
benchmark in a reproducible manner.

A recent study identified the evaluation-test-suite-based ap-
proach to be reproducible, if conservative [72]: Evaluation test-
suites may miss identifying some overfitting patches, but every
patch they identify as overfitting, does so. This approach is comple-
mentary to manual inspection, which is less reliable but can identify
some instances of overfitting that evaluation test suites miss [72].
Future research should pursue improving automated test generation
with the goal of producing higher-quality evaluation test suites for
program repair. Perhaps complementary to this challenge is recent
work on automatically generating test-suites from natural-language
software artifacts (instead of human-patched version of code) [17],
[97].

The generalizability of our results relies on the generalizability
of the four program repair techniques we use in our evaluation.
While the classification of G&V techniques [132] makes the argu-
ment that evaluations on representative techniques should generalize
to other techniques in this class, evaluations on a larger, more di-
verse set of techniques provide stronger evidence. In this paper,
we have evaluated four G&V techniques. Applying our method-
ology to other techniques would constitute a valuable replication
study. However, technological challenges prevented us from adding
more techniques. Some projects do not release their tools’ im-
plementations, making reuse difficult. Some projects release only
compiled binaries of their tools and do not make the source code
public, which prevents minor modifications to those tool neces-
sary for running experiments. For example, we were unable to
use CapGen [134] in our evaluation because only its compiled bi-
nary is publicly available and we could not modify it to run using
only a subset of the developer-written test-suites (as is required in

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

Sections 5.2.2 and 5.2.3) and EvoSuite-generated test-suites (as is
required in Section 5.2.4). Finally, some tools cannot be used as en-
visioned by the original project because of environmental changes.
For example, we were unable to use ACS [137] in our evaluation
because it was designed to work with a particular query style that
directly interacts with GitHub, and GitHub has since disabled such
queries. More generally, a recent empirical study on Java program
repair techniques found that 13 out of the 24 (54%) techniques stud-
ied could not be used, including ACS and CapGen. The techniques
could not be used because they were not publicly available, did not
function as expected, required extraordinary manual effort to run
(e.g., manual fault localization), or had hard-coded information to
work on specific defect benchmarks and could not be modified with
reasonable effort to work on others [41]. When possible, future
research that produces automated program repair techniques should
aim to make their tools public, releasing their source code, and
avoid encoding specific benchmarks or experimental setups into the
tools themselves.

6.2 Threats to Validity

Our study uses Defects4J, a well-established benchmark of defects
in five real-world, open source Java projects. The diversity, and real-
world nature of Defects4J mitigates the threat that our study will not
generalize to other defects. Defects4J is evolving and growing with
new projects, and our methodology can be applied to subsequently
added projects, and to other benchmarks, to further demonstrate
generalizability.

Our objective methodology for measuring patch quality requires
independently generated test suites and the quality of those test
suites affects our quality measurement. We use state-of-the-art auto-
mated test generation techniques, EvoSuite [49] and Randoop [105],
but even state-of-the-art tools struggle to perform well on real-world
programs. To mitigate this threat, we experimented with two test
generation tools and their configuration parameters, developed a
methodology for generating and merging multiple test suites, and
only perform our study on the 71 out of 106 defects (67%) whose
evaluation test suites met strict coverage criteria on the code affected
by developer-written patches for the defects.

Our test-suite-based methodology for measuring patch quality
inherently overestimates the quality of patches because the evalua-
tion test suites are necessarily partial specifications. If our method-
ology identifies a test that fails on a patch, the patch is necessarily
incorrect; however, if our methodology deems a patch of 100% qual-
ity, there could still exist a hypothetical evaluation test the patch
would fail. As a result, our conclusions are conservative. We find
that automated program repair often overfits on real-world Java
defects, but the reality could be even more dire.

GenProg, Par, SimFix, and TrpAutoRepair are four represen-
tative G&V automated program repair techniques. Prior work has
explored similarity unifying G&V repair and developed an under-
lying theory, suggesting that results from analysis of these four
techniques should generalize to other G&V techniques [132].

Our methodology follows the guidelines for evaluating ran-
domized algorithms [7] and uses repair techniques’ configuration
parameters from prior evaluations that explored the effectiveness of
those parameter settings [69], [77], [111]. We carefully control for
a variety of potential confounding factors in our experiments, and
use statistical tests that are appropriate for their context. We make
all our code, test suites, and data public to increase researchers
being able to replicate our results, explore variations of our exper-
iments, and extend the work to other repair techniques, test suite

generation tools, and defect datasets. JaRFly repair framework
is available from http://JaRFly.cs.umass.edu/ and our gen-
erated test suites and experimental results from http://github.
com/LASER-UMASS/JavaRepair-replication-package/.

7 RELATED WORK

This section places our research in the context of prior work on
automated program repair (Section 7.1), studies of quality and
other properties of automated program repair (Section 7.2), and
benchmarks of defects for use to evaluate automated program repair
(Section 7.3).

7.1 Automatic Program Repair Techniques

There are two classes of approaches to repairing defects using fail-
ing tests to identify faulty behavior and passing tests to encode
desirable behavior: G&V and semantic-based repair. The G&V
techniques use search-based software engineering [57] to generate
many candidate patches and then validate them against tests. Gen-
Prog [77], [80], [133] uses a genetic programming heuristic [71] to
search the space of candidate repairs. TrpAutoRepair [111] limits
its patches to a single edit, uses random search instead of genetic
programming, and heuristics to select which tests to run first, im-
proving efficiency. Prophet [88] and HDRepair [75] automatically
learn bug-fixing patterns from prior developer-written patches and
use them to produce candidate patches for new defects. AE [132] is
a deterministic technique that uses heuristic computation of program
equivalence to prune the space of possible repairs, selectively choos-
ing which tests to use to validate intermediate patch candidates.
ErrDoc [128] uses insights obtained from a comprehensive study
of error handling bugs in real-world C programs to automatically
detect, diagnose, and repair the potential error handling bugs in C
programs. JAID [26] uses automatically derived state abstractions
from regular Java code without requiring any special annotations
and employs them, similar to the contract-based techniques to gen-
erate candidate repairs for Java programs. Qlose [32] optimizes a
program distance, a function of syntactic and semantic differences
between the original buggy and the patched programs, while gen-
erating candidate patches. DeepFix [56] and ELIXIR [116] use
learned models to predict erroneous program locations along with
patches. ssFix [135] uses existing code that is syntactically related
to the context of a bug to produce patches. CapGen [134] works
at the AST node level and uses context and dependency similar-
ity (instead of semantic similarity) between the suspicious code
fragment and the candidate code snippets to produce patches. Sap-
Fix [89] and Getafix [9], two tools deployed on production code at
Facebook, efficiently produce correct repairs for large real-world
programs. SapFix [89] uses prioritized repair strategies, including
pre-defined fix templates, mutation operators, and bug-triggering
change reverting, to produce repairs in realtime. Getafix [9] learns
fix patterns from past code changes to suggest repairs for bugs
that are found by Infer, Facebook’s in-house static analysis tool.
SimFix [63] considers the variable name and method name simi-
larity, as well as structural similarity between the suspicious code
and candidate code snippets. Similar to CapGen, it prioritizes the
candidate modifications by removing the ones that are found less
frequently in existing patches. SketchFix [60] optimizes the candi-
date patch generation and evaluation by translating faulty programs
to sketches (partial programs with holes) and lazily initializing the
candidates of the sketches while validating them against the test
execution. Par [69] and SOFix [84] use predefined repair templates

http://JaRFly.cs.umass.edu/
http://github.com/LASER-UMASS/JavaRepair-replication-package/
http://github.com/LASER-UMASS/JavaRepair-replication-package/

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 19

to generate candidate patches. These repair templates are created
based on the repair patterns mined from StackOverflow posts by
comparing code samples in questions and answers for fine-grained
modifications. Synthesis techniques can also construct new features
from examples [28], [54], rather than address existing bugs.

The semantic-based techniques use semantic reasoning to syn-
thesize patches to satisfy an inferred specification. Nopol [138],
Semfix [101], DirectFix [93], and Angelix [94] use SMT or SAT
constraints to encode test-based specifications. S3 [74] extends
the semantics-based family to incorporate a set of ranking criteria
such as the variation of the execution traces similar to Qlose [32].
JFIX [73] extends Angelix [94] to target Java programs. Sem-
Graft [92] infers specifications by symbolically analyzing a correct
reference implementation instead of using test cases. Genesis [85],
Refazer [115], NoFAQ [33], Sarfgen [130], and Clara [55] process
correct patches to automatically infer code transformations to gen-
erate patches. SearchRepair [68] blurs the line between G&V and
semantic-based techniques by using constraint-based encoding of
the desired behavior to replace suspicious code with semantically-
similar human-written code from elsewhere.

Our work does not introduce new repair techniques but aims
to help techniques properly evaluate their ability to produce high-
quality patches for real-world defects. Our work enables properly
comparing techniques with respect to patch quality, and encour-
ages the creation of new techniques whose focus is producing
high-quality patches on real-world defects. Empirical studies of
fixes of real bugs in open-source projects can also improve re-
pair techniques by helping designers select change operators and
search strategies [66], [142]. Understanding how repair techniques
handle particular classes of errors, such as security vulnerabili-
ties [80], [108] can guide tool design. For this reason, some auto-
mated repair techniques focus on a particular defect class, such as
buffer overruns [119], [121], unsafe integer use in C programs [29],
single-variable atomicity violations [64], deadlock and livelock de-
fects [82], concurrency errors [83], and data input errors [5] while
other techniques tackle generic bugs. Our evaluation has focused
on tools that fix generic bugs, but our methodology can be applied
to focused repair as well.

In addition to repair, search-based software engineering has
been used for developing test suites [95], [129], finding safety vio-
lations [4], refactoring [117], and project management and effort
estimation [11]. Good fitness functions are critical to search-based
software engineering. Our findings indicate that using test cases
alone as the fitness function leads to patches that may not gener-
alize to the program requirements, and more sophisticated fitness
functions may be required for search-based program repair.

7.2 Empirical Studies Evaluating Automatic Program Repair

Prior work has argued the importance of evaluating the types of de-
fects automated repair techniques can repair [98], and evaluating the
generated patches for understandability, correctness, and complete-
ness [96]. Yet many of the prior evaluations of repair techniques
have focused on what fraction of a set of defects the technique can
produce patches for (e.g., [23], [31], [42], [64], [80], [90], [132],
[133]), how quickly they produce patches (e.g., [77], [132]), how
maintainable the patches are (e.g., [50]), and how likely developers
are to accept them (e.g., [1], [69]).

However, some recent studies have focused on evaluating the
quality of repair and developing approaches to mitigate patch over-
fitting. For example, on 204 Eiffel defects, manual patch inspec-
tion showed that AutoFix produced high-quality patches for 51

(25%) of the defects, which corresponded to 59% of the patches it
produced [107]. While AutoFix uses contracts to specify desired
behavior, by contrast, the patch quality produced by techniques
that use tests has been found to be much lower. Manual inspec-
tion of the patches produced by GenProg, TrpAutoRepair (referred
to as RSRepair in that paper), and AE on a 105-defect subset of
ManyBugs [114], and by GenProg, Nopol, and Kali on a 224-defect
subset of Defects4J showed that patch quality is often lacking in
automatically produced patches [90]. An automated evaluation ap-
proach that uses a second, independent test suite not used to produce
the patch to evaluate the quality of the patch similarly showed that
GenProg, TrpAutoRepair, and AE all produce patches that overfit
to the supplied specification and fail to generalize to the intended
specification [20], [122]. This work has led to new techniques that
improve the quality of the patches [68], [86], [88], [135], [136],
[141]. For example, DiffTGen generates tests that exercise behavior
differences between the defective version and a candidate patch, and
uses a human oracle to rule out incorrect patches. This approach can
filter out 49.4% of the overfitting patches [135]. Using heuristics
to approximate oracles can generate more tests to filter out 56.3%
of the overfitting patches [136]. UnsatGuided uses held-out tests
to filter out overfitting patches for synthesis-based repair, and is
effective for patches that introduce regressions but not for patches
that only partially fix defects [141]. Automated test generation tech-
niques that generate test inputs along with oracles [17], [53], [97],
[124] or use behavioral domain constraints [6], [52], [65], [127],
data constraints [45], [99], [100], or temporal constraints [12], [13],
[14], [43], [102] as oracles could potentially address the limitations
of the above-described approaches.

Using independent test suites to measure patch quality is im-
perfect, as test suites are partial and may identify some incorrect
patches as correct. On a dataset of 189 patches produced by 8
repair techniques applied to 13 real-world Java projects, indepen-
dent tests identify fewer than one fifth of the incorrect patches,
underestimating the overfitting problem [72]. However, on other
benchmarks, the results are much more positive. For example,
on the QuixBugs benchmark, combining test-based and manual-
inspection-based quality evaluation could identify 33 overfitting
patches, while test-based evaluation alone identified 29 of the 33
(87.9%) [140]. While the human judgment is a criterion not used by
the repair tools for patch construction, it is fundamentally different
from the correctness criterion we use in our evaluation, as it is often
difficult for humans to spot bugs even when told exactly where
to look for them [106]. Further, using independently generated
test suites instead of using the subset of the original test suite to
evaluate patch quality ensures that we do not ignore regressions
a patch is most likely to introduce. Poor-quality test suites result
in patches that overfit to those suites [114]. Our evaluation goes
further, demonstrating that high-quality, high-coverage test suites
still lead to overfitting, and identifying other relationships between
test suite properties and patch quality.

Our work has focused on understanding the effectiveness of
repair techniques to patch large real-world Java programs correctly
and to identify what factors affect the generation of high-quality
patches. Studying the effects of test suite size, coverage, number
of failing tests, and test provenance on the quality of the patches
generated by Angelix on the IntroClass [79] and Codeflaws [126]
benchmarks of defects in small programs finds results consistent
with ours. By contrast, our work focuses on real-world defects in
real-world projects and G&V repair. Further, prior work has shown
that the selection of test subjects (defects) can introduce evaluation

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

bias [16], [110]. Our evaluation focuses precisely on the limits
and potential of repair techniques on a large dataset of defects, and
controls for a variety of potential confounds, addressing some of
Monperrus’ concerns [96].

Our answer to RQ6 considers combining multiple patches in
a form of n-version programming [25]. N-version programming
works poorly with human-written systems because the errors hu-
mans make do not appear to be independent [70]. Our evaluation
has shown that the n-version of automatically-generated patches
also fails to provide a benefit.

7.3 Defect Benchmarks

Several benchmarks of defects have evolved specifically for eval-
uating automated repair. The ManyBugs benchmark [79] consists
of 185 C defects in real-world software. The IntroClass bench-
mark [79] consists of 998 C defects in very small, student-written
programs, although not all 998 are unique. The Codeflaws bench-
mark [126] consists of 3,902 defects from 7,436 C programs mined
from programming contests and automatically classified across
39 defect classes. The DBGBench benchmark [19] (based on the
CoREBench benchmark [18]) contains a collection of 70 real re-
gression errors in four open-source C projects. The QuixBugs
benchmark [81] consists of 40 programs from the Quixey Chal-
lenge, where programmers were given a short buggy program and
one minute to fix the bug. The programs are translated to Python
and Java, and each bug is contained on a single line. The De-
fects4J benchmark [66], originally designed for testing and fault-
localization studies, consists of 357 Java defects in real-world soft-
ware, and has become a popular benchmark for evaluating auto-
mated program repair [42], [90], [98], [138]. We elected to use
Defects4J because it contains real-world defects in large, complex
projects, it supports reproducibility and test suite generation, and is
increasingly a testbed for evaluating automated program repair.

8 CONTRIBUTIONS

While automated program repair shows promise for improving soft-
ware quality and reducing the costs of software maintenance, several
studies have raised concerns that program repair may do more harm
than good in terms of software quality. This paper has systemati-
cally and rigorously explored the effect of four G&V program repair
techniques on real-world defects in real-world Java projects, and
found that while program repair techniques do sometimes produce
patches, those patches often (between 53.9% and 86.2% of the time)
break untested or undertested functionality. In fact, the median
patch breaks more functionality than it repairs. Increasing the size
of the test suite used to guide the repair process can help slightly
improve patch quality. In most cases, test suites written by humans
lead to higher-quality patches than automatically-generated test
suites. Finally, the patches the techniques generate lack sufficient
diversity to be combined in a way to improve patch quality.

This work is the first to explore the relationships between these
aspects of patch generation and patch quality on real-world defects,
building on prior studies on toy programs [20], [76], [122]. Our
study rigorously controls for possible confounding factors and uses
an objective, repeatable quality-evaluation methodology.

To enable our study, we create JaRFly, a framework for Java
G&V program repair techniques. We use JaRFly to faithfully
reimplement GenProg [77] and TrpAutoRepair [111] for Java,
improving on prior attempts to do so. We further use JaRFly
to reimplement Par [69] and make the first public release of

a Par implementation. JaRFly is open-source and available at
http://JaRFly.cs.umass.edu/. We further use state-of-the-art
automated test generation to generate high-quality test suites for
real-world defects in Defects4J used in our study, and create a
methodology for generating more such test suites for other defects.
Our data, test suites, and scripts are all available at http://github.
com/LASER-UMASS/JavaRepair-replication-package/.

Overall, our work has identified the shortcomings of today’s
program repair techniques when applied to real-world defects, and
will drive research toward improving the quality of program repair.

9 ACKNOWLEDGMENTS

This work is supported by the National Science Foundation un-
der grants CCF-1453474, CCF-1563797, CCF-1564162, and CCF-
1750116. This work was performed in part using high performance
computing equipment obtained under a grant from the Collaborative
R&D Fund managed by the Massachusetts Technology Collabora-
tive.

REFERENCES

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson,
Michael K. Reiter, and Jay J. Wylie. Fault-scalable Byzantine fault-
tolerant services. In ACM Symposium on Operating Systems Principles
(SOSP), pages 59–74, Brighton, UK, 2005.

[2] Thomas Ackling, Bradley Alexander, and Ian Grunert. Evolving patches
for software repair. In Annual Conference on Genetic and Evolutionary
Computation (GECCO), pages 1427–1434, Dublin, Ireland, 2011.

[3] Afsoon Afzal, Manish Motwani, Kathryn T. Stolee, Yuriy Brun, and
Claire Le Goues. SOSRepair: Expressive semantic search for real-world
program repair. IEEE Transactions on Software Engineering (TSE), 2020.

[4] Enrique Alba and Francisco Chicano. Finding safety errors with ACO. In
Conference on Genetic and Evolutionary Computation (GECCO), pages
1066–1073, London, England, UK, July 2007.

[5] Muath Alkhalaf, Abdulbaki Aydin, and Tevfik Bultan. Semantic dif-
ferential repair for input validation and sanitization. In International
Symposium on Software Testing and Analysis (ISSTA), pages 225–236,
San Jose, CA, USA, July 2014.

[6] Rico Angell, Brittany Johnson, Yuriy Brun, and Alexandra Meliou.
Themis: Automatically testing software for discrimination. In Euro-
pean Software Engineering Conference and ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE), pages
871–875, Lake Buena Vista, FL, USA, November 2018.

[7] Andrea Arcuri and Lionel Briand. A practical guide for using statisti-
cal tests to assess randomized algorithms in software engineering. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 1–10, Honolulu, HI, USA, 2011.

[8] Atlassian. Clover code coverage tool. https://www.atlassian.com/
software/clover, 2016.

[9] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra.
Getafix: Learning to fix bugs automatically. Proceedings of the ACM
on Programming Languages (PACMPL) Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA) issue, 3, October 2019.

[10] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Feder-
ica Sarro. The plastic surgery hypothesis. In ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), pages 306–317, Hong
Kong, China, November 2014.

[11] Ahilton Barreto, Márcio Barros, and Cláudia Werner. Staffing a software
project: A constraint satisfaction approach. Computers and Operations
Research, 35(10):3073–3089, 2008.

[12] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst,
and Arvind Krishnamurthy. Unifying FSM-inference algorithms through
declarative specification. In ACM/IEEE International Conference on
Software Engineering (ICSE), pages 252–261, San Francisco, CA, USA,
May 2013.

[13] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst,
and Arvind Krishnamurthy. Using declarative specification to improve
the understanding, extensibility, and comparison of model-inference al-
gorithms. IEEE Transactions on Software Engineering (TSE), 41(4):408–
428, April 2015.

http://JaRFly.cs.umass.edu/
http://github.com/LASER-UMASS/JavaRepair-replication-package/
http://github.com/LASER-UMASS/JavaRepair-replication-package/
https://www.atlassian.com/software/clover
https://www.atlassian.com/software/clover

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 21

[14] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and
Michael D. Ernst. Leveraging existing instrumentation to automatically
infer invariant-constrained models. In European Software Engineering
Conference and ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE), pages 267–277, Szeged, Hungary,
September 2011.

[15] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson
Engler. A few billion lines of code later: Using static analysis to find bugs
in the real world. Communications of the ACM, 53(2):66–75, February
2010.

[16] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham
Bernstein, Vladimir Filkov, and Premkumar Devanbu. Fair and balanced?:
Bias in bug-fix datasets. In European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 121–130, Amsterdam, The
Netherlands, August 2009.

[17] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla,
Michael D. Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. Trans-
lating code comments to procedure specifications. In International Sym-
posium on Software Testing and Analysis (ISSTA), pages 242–253, Ams-
terdam, Netherlands, 2018.

[18] Marcel Böhme and Abhik Roychoudhury. CoREBench: Studying com-
plexity of regression errors. In ACM/SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA), pages 105–115, San Jose, CA,
CA, July 2014.

[19] Marcel Böhme, Ezekiel Olamide Soremekun, Sudipta Chattopadhyay,
Emamurho Ugherughe, and Andreas Zeller. Where is the bug and how
is it fixed? An experiment with practitioners. In European Software
Engineering Conference and ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE), pages 117–128,
Paderborn, Germany, September 2017.

[20] Yuriy Brun, Earl Barr, Ming Xiao, Claire Le Goues, and Prem Devanbu.
Evolution vs. intelligent design in program patching. Technical Report
https://escholarship.org/uc/item/3z8926ks, UC Davis: College of Engi-
neering, 2013.

[21] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 209–224, San Diego, CA, USA, 2008.

[22] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. Gzoltar:
An Eclipse plug-in for testing and debugging. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 378–381,
Essen, Germany, September 2012.

[23] Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Nicolò Perino,
and Mauro Pezzè. Automatic recovery from runtime failures. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 782–791, San Francisco, CA, USA, 2013.

[24] Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè.
Automatic workarounds for web applications. In ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (FSE), pages
237–246, Santa Fe, New Mexico, USA, 2010.

[25] Liming Chen and Algirdas Avižienis. N-version programming: A fault-
tolerance approach to reliability of software operation. In IEEE Inter-
national Symposium on Fault-Tolerant Computing (FTCS), pages 3–9,
1978.

[26] Liushan Chen, Yu Pei, and Carlo A. Furia. Contract-based program
repair without the contracts. In IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 637–647, Urbana, IL,
USA, November 2017.

[27] Steven Christou. Cobertura code coverage tool. https://cobertura.github.
io/cobertura/, 2015.

[28] Robert Cochran, Loris D’Antoni, Benjamin Livshits, David Molnar,
and Margus Veanes. Program boosting: Program synthesis via crowd-
sourcing. In Symposium on Principles of Programming Languages
(POPL), pages 677–688, Mumbai, India, January 2015.

[29] Zack Coker and Munawar Hafiz. Program transformations to fix C inte-
gers. In ACM/IEEE International Conference on Software Engineering
(ICSE), pages 792–801, San Francisco, CA, USA, 2013.

[30] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis,
and Anthony Ventresque. PIT: A practical mutation testing tool for java
(demo). In International Symposium on Software Testing and Analysis
(ISSTA), pages 449–452, Saarbrücken, Germany, 2016. ACM.

[31] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. Generating fixes
from object behavior anomalies. In IEEE/ACM International Conference
on Automated Software Engineering (ASE) short paper track, pages 550–
554, Auckland, New Zealand, November 2009.

[32] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program
repair with quantitative objectives. In International Conference on Com-
puter Aided Verification (CAV), pages 383–401, Toronto, ON, Canada,
July 2016.

[33] Loris D’Antoni, Rishabh Singh, and Michael Vaughn. NoFAQ: Synthesiz-
ing command repairs from examples. In European Software Engineering
Conference and ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pages 582–592, Paderborn,
Germany, September 2017.

[34] Eduardo Faria de Souza, Claire Le Goues, and Celso Gonçalves Camilo-
Junior. A novel fitness function for automated program repair based on
source code checkpoints. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’18, page 1443–1450, New York, NY,
USA, 2018. Association for Computing Machinery.

[35] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan.
A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation (TEVC), 6(2):182–197, April
2002.

[36] Vidroha Debroy and W. Eric Wong. Using mutation to automatically sug-
gest fixes for faulty programs. In International Conference on Software
Testing, Verification, and Validation (ICST), pages 65–74, Paris, France,
2010.

[37] Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant,
Jeff H. Perkins, and Martin Rinard. Inference and enforcement of data
structure consistency specifications. In International Symposium on
Software Testing and Analysis (ISSTA), pages 233–243, Portland, ME,
USA, July 2006.

[38] Brian Demsky and Martin C. Rinard. Goal-directed reasoning for
specification-based data structure repair. IEEE Transactions on Soft-
ware Engineering (TSE), 32(12):931–951, December 2006.

[39] Aritra Dhar, Rahul Purandare, Mohan Dhawan, and Suresh Rangaswamy.
CLOTHO: Saving programs from malformed strings and incorrect string-
handling. In Joint Meeting of the European Software Engineering Con-
ference and the Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 555—-566, Bergamo, Italy, 2015.

[40] Zhen Yu Ding, Yiwei Lyu, Christopher Timperley, and Claire Le Goues.
Leveraging program invariants to promote population diversity in search-
based automatic program repair. In International Workshop on Genetic
Improvement (GI), Montreal, QC, Canada, 2019.

[41] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu.
Empirical review of Java program repair tools: A large-scale experi-
ment on 2,141 bugs and 23,551 repair attempts. In European Software
Engineering Conference and ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE), pages 302–313,
Tallinn, Estonia, 2019.

[42] Thomas Durieux, Matias Martinez, Martin Monperrus, Romain Som-
merard, and Jifeng Xuan. Automatic repair of real bugs: An experience
report on the Defects4J dataset. CoRR, abs/1505.07002, 2015.

[43] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in property specifications for finite-state verification. In ACM/IEEE
International Conference on Software Engineering (ICSE), 1999.

[44] EclEmma. JaCoCo Java code coverage library. https://www.eclemma.
org/jacoco/, 2017.

[45] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program
evolution. IEEE Transactions on Software Engineering (TSE), 27(2):99–
123, 2001.

[46] H.-Christian Estler, Carlo A. Furia, Martin Nordio, Marco Piccioni, and
Bertrand Meyer. Contracts in practice. In International Symposium on
Formal Methods (FM), pages 230–246, Singapore, May 2014.

[47] Ethan Fast, Claire Le Goues, Stephanie Forrest, and Westley Weimer.
Designing better fitness functions for automated program repair. In
Genetic and Evolutionary Computation Conference (GECCO), pages
965–972, July 2010.

[48] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le
Goues. A genetic programming approach to automated software repair. In
Conference on Genetic and Evolutionary Computation (GECCO), pages
947–954, Montreal, QC, Canada, 2009.

[49] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE
Transactions on Software Engineering (TSE), 39(2):276–291, February
2013.

[50] Zachary P. Fry, Bryan Landau, and Westley Weimer. A human study of
patch maintainability. In International Symposium on Software Testing
and Analysis (ISSTA), pages 177–187, Minneapolis, MN, USA, July
2012.

[51] Mark Gabel and Zhendong Su. Testing mined specifications. In ACM SIG-

https://escholarship.org/uc/item/3z8926ks
https://cobertura.github.io/cobertura/
https://cobertura.github.io/cobertura/
https://www.eclemma.org/jacoco/
https://www.eclemma.org/jacoco/

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

SOFT International Symposium on Foundations of Software Engineering
(FSE), Cary, NC, USA, 2012.

[52] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing:
Testing software for discrimination. In European Software Engineering
Conference and ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pages 498–510, Paderborn,
Germany, September 2017.

[53] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. Au-
tomatic generation of oracles for exceptional behaviors. In International
Symposium on Software Testing and Analysis (ISSTA), pages 213–224,
Saarbrücken, Genmany, July 2016.

[54] Sumit Gulwani. Automating string processing in spreadsheets using
input-output examples. In Symposium on Principles of Programming
Languages (POPL), pages 317–330, Austin, TX, USA, 2011.

[55] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. Automated clus-
tering and program repair for introductory programming assignments.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 465–480, Philadelphia, PA, USA, June
2018.

[56] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K. Shevade. Deep-
Fix: Fixing common C language errors by deep learning. In National
Conference on Artificial Intelligence (AAAI), pages 1345–1351, San Fran-
cisco, CA, USA, February 2017.

[57] Mark Harman. The current state and future of search based software
engineering. In ACM/IEEE International Conference on Software Engi-
neering (ICSE), pages 342–357, 2007.

[58] Mark Harman and Bryan F Jones. Search-based software engineering.
Information and Software Technology, 43(14):833–839, 2001.

[59] Marc R. Hoffmann, Brock Janiczak, Evgeny Mandrikov, and Mirko
Friedenhagen. JaCoCo code coverage tool. https://www.jacoco.org/
jacoco/, 2009.

[60] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. To-
wards practical program repair with on-demand candidate generation. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 12–23, Gothenburg, Sweden, June 2018.

[61] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. Code
coverage at Google. In Joint Meeting of the European Software Engi-
neering Conference and the Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 955–963, Tallinn, Estonia, August 2019.

[62] Jiajun Jiang. SimFix implementation. https://github.com/xgdsmileboy/
SimFix/, 2017.

[63] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun
Chen. Shaping program repair space with existing patches and similar
code. In ACM/SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), pages 298–309, Amsterdam, The Netherlands, July
2018.

[64] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Au-
tomated atomicity-violation fixing. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 389–
400, San Jose, CA, USA, 2011.

[65] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. Causal testing: Un-
derstanding defects’ root causes. In ACM/IEEE International Conference
on Software Engineering (ICSE), Seoul, Republic of Korea, May 2020.

[66] René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A database
of existing faults to enable controlled testing studies for Java programs.
In Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), pages 437–440, San Jose, CA, USA, July 2014.

[67] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid
Holmes, and Gordon Fraser. Are mutants a valid substitute for real faults
in software testing? In ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), Hong Kong, China, 2014.

[68] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. Repair-
ing programs with semantic code search. In IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 295–306,
Lincoln, NE, USA, November 2015.

[69] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Au-
tomatic patch generation learned from human-written patches. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 802–811, San Francisco, CA, USA, 2013.

[70] John C. Knight and Nancy G. Leveson. An experimental evaluation of
the assumption of independence in multiversion programming. IEEE
Transactions on Software Engineering (TSE), 12(1):96–109, 1986.

[71] John R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[72] Xuan Bach D. Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and
Corina S. Pasareanu. On reliability of patch correctness assessment. In

ACM/IEEE International Conference on Software Engineering (ICSE),
May 2019.

[73] Xuan Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem
Visser. JFIX: Semantics-based repair of Java programs via symbolic
PathFinder. In ACM/SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), pages 376–379, Santa Barbara, CA, USA,
July 2017.

[74] Xuan Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem
Visser. S3: Syntax- and semantic-guided repair synthesis via program-
ming by examples. In European Software Engineering Conference and
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE), Paderborn, Germany, September 2017.

[75] Xuan Bach D. Le, David Lo, and Claire Le Goues. History driven program
repair. In International Conference on Software Analysis, Evolution, and
Reengineering (SANER), volume 1, pages 213–224, March 2016.

[76] Xuan Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues.
Overfitting in semantics-based automated program repair. In ACM/IEEE
International Conference on Software Engineering (ICSE), pages 163–
163, 2018.

[77] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A systematic study of automated program repair: Fixing 55
out of 105 bugs for $8 each. In AMC/IEEE International Conference on
Software Engineering (ICSE), pages 3–13, Zurich, Switzerland, 2012.

[78] Claire Le Goues, Stephanie Forrest, and Westley Weimer. Representations
and operators for improving evolutionary software repair. In Conference
on Genetic and Evolutionary Computation (GECCO), pages 959–966,
Philadelphia, PA, USA, July 2012.

[79] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun,
Premkumar Devanbu, Stephanie Forrest, and Westley Weimer. The Many-
Bugs and IntroClass benchmarks for automated repair of C programs.
IEEE Transactions on Software Engineering (TSE), 41(12):1236–1256,
December 2015.

[80] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. GenProg: A generic method for automatic software repair. IEEE
Transactions on Software Engineering (TSE), 38:54–72, 2012.

[81] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama.
QuixBugs: A multi-lingual program repair benchmark set based on
the Quixey Challenge. In ACM SIGPLAN International Conference
on Systems, Programming, Languages, and Applications: Software for
Humanity Poster Track, pages 55–56, Vancouver, BC, Canada, October
2017.

[82] Yiyan Lin and Sandeep S. Kulkarni. Automatic repair for multi-threaded
programs with deadlock/livelock using maximum satisfiability. In Inter-
national Symposium on Software Testing and Analysis (ISSTA), pages
237–247, San Jose, CA, USA, July 2014.

[83] Peng Liu, Omer Tripp, and Charles Zhang. Grail: Context-aware fixing
of concurrency bugs. In ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), pages 318–329, Hong Kong,
China, November 2014.

[84] Xuliang Liu and Hao Zhong. Mining StackOverflow for program repair.
In International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), pages 118–129, Campobasso, Italy, March 2018.

[85] Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of
code transforms for patch generation. In European Software Engineering
Conference and ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pages 727–739, Paderborn,
Germany, September 2017.

[86] Fan Long and Martin Rinard. Staged program repair with condition
synthesis. In European Software Engineering Conference and ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 166–178, Bergamo, Italy, 2015.

[87] Fan Long and Martin Rinard. An analysis of the search spaces for generate
and validate patch generation systems. In ACM/IEEE International
Conference on Software Engineering (ICSE), pages 702–713, Buenos
Aires, Argentina, 2016.

[88] Fan Long and Martin Rinard. Automatic patch generation by learning
correct code. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 298–312, St. Petersburg, FL,
USA, 2016.

[89] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman,
Yue Jia, Ke Mao, Alexander Mols, and Andrew Scott. SapFix: Automated
end-to-end repair at scale. In ACM/IEEE International Conference on
Software Engineering (ICSE), Montreal, QC, Canada, May 2019.

[90] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and
Martin Monperrus. Automatic repair of real bugs in Java: A large-scale
experiment on the Defects4J dataset. Empirical Software Engineering
(EMSE), 22(4):1936–1964, April 2017.

https://www.jacoco.org/jacoco/
https://www.jacoco.org/jacoco/
https://github.com/xgdsmileboy/SimFix/
https://github.com/xgdsmileboy/SimFix/

MOTWANI et al.: QUALITY OF AUTOMATED PROGRAM REPAIR ON REAL-WORLD DEFECTS 23

[91] Matias Martinez and Martin Monperrus. ASTOR: A program repair
library for Java (Demo). In International Symposium on Software Testing
and Analysis (ISSTA) Demo track, pages 441–444, Saarbrücken, Germany,
2016.

[92] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske,
and Abhik Roychoudhury. Semantic program repair using a reference
implementation. In ACM/IEEE International Conference on Software
Engineering (ICSE), pages 129–139, Gothenburg, Sweden, 2018.

[93] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. DirectFix:
Looking for simple program repairs. In International Conference on
Software Engineering (ICSE), pages 448–458, Florence, Italy, May 2015.

[94] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scal-
able multiline program patch synthesis via symbolic analysis. In Inter-
national Conference on Software Engineering (ICSE), pages 691–701,
Austin, TX, USA, May 2016.

[95] Christoph C. Michael, Gary McGraw, and Michael A. Schatz. Gener-
ating software test data by evolution. IEEE Transactions on Software
Engineering (TSE), 27(12):1085–1110, December 2001.

[96] Martin Monperrus. A critical review of “Automatic patch generation
learned from human-written patches”: Essay on the problem statement
and the evaluation of automatic software repair. In ACM/IEEE Inter-
national Conference on Software Engineering (ICSE), pages 234–242,
Hyderabad, India, June 2014.

[97] Manish Motwani and Yuriy Brun. Automatically generating precise
oracles from structured natural language specifications. In ACM/IEEE
International Conference on Software Engineering (ICSE), Montreal, QC,
Canada, May 2019.

[98] Manish Motwani, Sandhya Sankaranarayanan, René Just, and Yuriy Brun.
Do automated program repair techniques repair hard and important bugs?
Empirical Software Engineering (EMSE), 23(5):2901–2947, October
2018.

[99] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. Data debugging
with continuous testing. In European Software Engineering Conference
and ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE) New Ideas Track, pages 631–634, Saint
Petersburg, Russia, August 2013.

[100] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. Preventing data errors
with continuous testing. In International Symposium on Software Testing
and Analysis (ISSTA), pages 373–384, Baltimore, MD, USA, July 2015.

[101] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. SemFix: Program repair via semantic analysis. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 772–781, San Francisco, CA, USA, 2013.

[102] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc
Palyart, Ivan Beschastnikh, and Yuriy Brun. Behavioral resource-aware
model inference. In IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 19–30, Västerås, Sweden, September
2014.

[103] Vinicius Paulo L. Oliveira, Eduardo Faria de Souza, Claire Le Goues, and
Celso G. Camilo-Junior. Improved representation and genetic operators
for linear genetic programming for automated program repair. Empirical
Software Engineering (EMSE), 23(5):2980–3006, 2018.

[104] Vinicius Paulo L. Oliveira, Eduardo F. D. Souza, Claire Le Goues, and
Celso G. Camilo-Junior. Improved crossover operators for genetic pro-
gramming for program repair. In International Symposium on Search
Based Software Engineering (SSBSE), pages 112–127, 2016.

[105] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In ACM/IEEE International
Conference on Software Engineering (ICSE), pages 75–84, Minneapolis,
MN, USA, May 2007.

[106] Chris Parnin and Alessandro Orso. Are automated debugging techniques
actually helping programmers? In International Symposium on Software
Testing and Analysis (ISSTA), pages 199–209, Toronto, ON, Canada,
2011.

[107] Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and
Andreas Zeller. Automated fixing of programs with contracts. IEEE
Transactions on Software Engineering (TSE), 40(5):427–449, 2014.

[108] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe,
Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sher-
wood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin,
Michael D. Ernst, and Martin Rinard. Automatically patching errors in
deployed software. In ACM Symposium on Operating Systems Principles
(SOSP), pages 87–102, Big Sky, MT, USA, October 12–14, 2009.

[109] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B.
Langdon, David R. White, and John R. Woodward. Genetic improvement
of software: A comprehensive survey. IEEE Transactions on Evolutionary
Computation (TEVC), 22(3):415–432, June 2018.

[110] Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. Ecological
inference in empirical software engineering. In International Conference
on Automated Software Engineering (ASE), pages 362–371, Lawrence,
KS, USA, November 2011.

[111] Yuhua Qi, Xiaoguang Mao, and Yan Lei. Efficient automated program
repair through fault-recorded testing prioritization. In International Con-
ference on Software Maintenance (ICSM), pages 180–189, Eindhoven,
The Netherlands, September 2013.

[112] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang.
The strength of random search on automated program repair. In Inter-
national Conference on Software Engineering (ICSE), pages 254–265,
2014.

[113] Yuhua Qi, Xiaoguang Mao, Yan Lei, and Chengsong Wang. Using auto-
mated program repair for evaluating the effectiveness of fault localization
techniques. In International Symposium on Software Testing and Analysis
(ISSTA), pages 191–201, Lugano, Switzerland, July 2013.

[114] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of
patch plausibility and correctness for generate-and-validate patch gen-
eration systems. In International Symposium on Software Testing and
Analysis (ISSTA), pages 24–36, Baltimore, MD, USA, 2015.

[115] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov,
Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. Learning
syntactic program transformations from examples. In ACM/IEEE Inter-
national Conference on Software Engineering (ICSE), pages 404–415,
Buenos Aires, Argentina, May 2017.

[116] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad.
ELIXIR: Effective object oriented program repair. In IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages
648–659, Urbana, IL, USA, November 2017.

[117] Olaf Seng, Johannes Stammel, and David Burkhart. Search-based de-
termination of refactorings for improving the class structure of object-
oriented systems. In Conference on Genetic and Evolutionary Computa-
tion (GECCO), pages 1909–1916, Seattle, WA, USA, July 2006.

[118] Sina Shamshiri, René Just, José M. Rojas, Gordon Fraser, Phil McMinn,
and Andrea Arcuri. Do automatically generated unit tests find real faults?
An empirical study of effectiveness and challenges. In International
Conference on Automated Software Engineering (ASE), pages 201–211,
Lincoln, NE, USA, November 2015.

[119] Stelios Sidiroglou and Angelos D. Keromytis. Countering network worms
through automatic patch generation. IEEE Security and Privacy, 3(6):41–
49, November 2005.

[120] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard.
Automatic error elimination by horizontal code transfer across multiple
applications. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 43–54, Portland, OR, USA,
2015.

[121] Alexey Smirnov and Tzi cker Chiueh. Dira: Automatic detection, identifi-
cation and repair of control-hijacking attacks. In Network and Distributed
System Security Symposium (NDSS), San Diego, CA, USA, February
2005.

[122] Edward K. Smith, Earl Barr, Claire Le Goues, and Yuriy Brun. Is the
cure worse than the disease? Overfitting in automated program repair. In
European Software Engineering Conference and ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (ESEC/FSE),
pages 532–543, Bergamo, Italy, September 2015.

[123] M. Soto and C. Le Goues. Using a probabilistic model to predict bug
fixes. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 221–231, March 2018.

[124] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. @tCom-
ment: Testing Javadoc comments to detect comment-code inconsistencies.
In International Conference on Software Testing, Verification, and Vali-
dation (ICST), pages 260–269, Montreal, QC, Canada, 2012.

[125] Shin Hwei Tan and Abhik Roychoudhury. relifix: Automated repair of
software regressions. In International Conference on Software Engineer-
ing (ICSE), Florence, Italy, 2015.

[126] Shin Hwei Tan, Jooyong Yi, Sergey Mechtaev, and Abhik Roychoud-
hury. Codeflaws: A programming competition benchmark for evaluating
automated program repair tools. In IEEE International Conference on
Software Engineering Poster Track, pages 180–182, Buenos Aires, Ar-
gentina, May 2017.

[127] Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen
Giguere, Yuriy Brun, and Emma Brunskill. Preventing undesirable behav-
ior of intelligent machines. Science, 366(6468):999–1004, 22 November
2019.

[128] Yuchi Tian and Baishakhi Ray. Automatically diagnosing and repairing
error handling bugs in C. In European Software Engineering Conference
and ACM SIGSOFT International Symposium on Foundations of Soft-

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACCEPTED FOR PUBLICATION

ware Engineering (ESEC/FSE), pages 752–762, Paderborn, Germany,
September 2017.

[129] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and
Robert S. Roos. Time-aware test suite prioritization. In International
Symposium on Software Testing and Analysis (ISSTA), pages 1–12, Port-
land, ME, USA, July 2006.

[130] Ke Wang, Rishabh Singh, and Zhendong Su. Search, align, and repair:
Data-driven feedback generation for introductory programming exercises.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 481–495, Philadelphia, PA, USA, June
2018.

[131] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand
Meyer, and Andreas Zeller. Automated fixing of programs with contracts.
In International Symposium on Software Testing and Analysis (ISSTA),
pages 61–72, Trento, Italy, 2010.

[132] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. Leveraging
program equivalence for adaptive program repair: Models and first re-
sults. In IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 356–366, Palo Alto, CA, USA, 2013.

[133] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 364–374, Vancouver, BC, Canada, 2009.

[134] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung.
Context-aware patch generation for better automated program repair. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 1–11, Gothenburg, Sweden, June 2018.

[135] Qi Xin and Steven P. Reiss. Identifying test-suite-overfitted patches
through test case generation. In ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA), pages 226–236, Santa Barbara,
CA, USA, 2017.

[136] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang.
Identifying patch correctness in test-based program repair. In ACM/IEEE
International Conference on Software Engineering (ICSE), pages 789–
799, Gothenburg, Sweden, June 2018.

[137] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang
Huang, and Lu Zhang. Precise condition synthesis for program repair. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 416–426, Buenos Aires, Argentina, May 2017.

[138] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebas-
tian Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin
Monperrus. Nopol: Automatic repair of conditional statement bugs in
Java programs. IEEE Transactions on Software Engineering (TSE), 2016.

[139] Jifeng Xuan and Martin Monperrus. Test case purification for improving
fault localization. In ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE), pages 52–63, Hong Kong, China,
November 2014.

[140] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. A
comprehensive study of automatic program repair on the QuixBugs bench-
mark. In IEEE International Workshop on Intelligent Bug Fixing (IBF),
pages 1–10, Hangzhou, China, February 2019.

[141] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux,
and Martin Monperrus. Alleviating patch overfitting with automatic test
generation: A study of feasibility and effectiveness for the Nopol repair
system. Empirical Software Engineering, 24(1):33–67, February 2019.

[142] Hao Zhong and Zhendong Su. An empirical study on real bug fixes. In
ACM/IEEE International Conference on Software Engineering (ICSE),
Florence, Italy, May 2015.

Manish Motwani is a PhD candidate in the College of
Information and Computer Sciences at the University
of Massachusetts Amherst, where he received the MS
degree in 2018. His research involves studying large
software repositories to learn interesting phenomena
in software development and maintenance, and to use
that knowledge to design novel automation techniques
for testing and program repair. More information is
available at: http://people.cs.umass.edu/∼mmotwani/.

Mauricio Soto is a PhD student in the School of
Computer Science at Carnegie Mellon University,
where he received the MS degree in 2018. His re-
search focuses on improving automated program re-
pair techniques. More information is available at:
https://www.cs.cmu.edu/∼msotogon/.

Yuriy Brun is an Associate Professor in the College of
Information and Computer Sciences at the University of
Massachusetts Amherst. He received the PhD degree
from the University of Southern California in 2008 and
completed his postdoctoral work at the University of
Washington in 2012. His research focuses on software
fairness, testing, and analysis. He received an NSF
CAREER award, an IEEE TCSC Young Achiever in
Scalable Computing Award, and the SEAMS 2020
Most Influential Paper Award. He is a distinguished
member of the ACM and a senior member of the IEEE.

More information is available at: http://www.cs.umass.edu/∼brun/.

René Just is an Assistant Professor at the University
of Washington. His research interests are in software
engineering and software security, in particular static
and dynamic program analysis, mobile security, mining
software repositories, and applied machine learning.
His research in the area of software engineering won
three ACM SIGSOFT Distinguished Paper Awards, and
he develops research infrastructures and tools (e.g.,
Defects4J and the Major mutation framework) that are
widely used by other researchers. More information is
available at: https://homes.cs.washington.edu/∼rjust/.

Claire Le Goues is an Associate Professor in the
School of Computer Science at Carnegie Mellon Uni-
versity, where she is primarily affiliated with the Institute
for Software Research. She received the BA degree
in Computer Science from Harvard University and the
MS and PhD degrees from the University of Virginia.
She received an NSF CAREER award, the ICSE 2019
Most Influential Paper Award, and the ACM SIGEVO
Impact Award in 2019. She is interested in constructing
high-quality systems in the face of continuous software
evolution, with a particular interest in automatic error

repair. More information is available at: http://www.cs.cmu.edu/∼clegoues.

http://people.cs.umass.edu/~mmotwani/
https://www.cs.cmu.edu/~msotogon/
http://www.cs.umass.edu/~brun/
https://homes.cs.washington.edu/~rjust/
http://www.cs.cmu.edu/~clegoues

	1 Introduction
	2 Automated Program Repair
	2.1 G&V and synthesis-based repair
	2.2 Evaluating repair quality

	3 JaRFly: The Java Repair Framework
	4 Real-World Defects and Test Suites
	4.1 Real-world defects
	4.2 Quality-evaluating test suites

	5 Empirical Measurements of Repair Quality
	5.1 Ability to produce a patch
	5.2 Patch Quality
	5.2.1 Patch overfitting
	5.2.2 Test suite coverage and size
	5.2.3 Defect severity
	5.2.4 Test suite provenance

	5.3 Mitigating Overfitting

	6 Discussion
	6.1 Limitations
	6.2 Threats to Validity

	7 Related Work
	7.1 Automatic Program Repair Techniques
	7.2 Empirical Studies Evaluating Automatic Program Repair
	7.3 Defect Benchmarks

	8 Contributions
	9 Acknowledgments
	References
	Biographies
	Manish Motwani
	Mauricio Soto
	Yuriy Brun
	René Just
	Claire Le Goues

