
Challenges Faced in the Process of Knowledge
Transfer in an Industrial Environment

Mauricio Soto
mauriciosoto@cmu.edu

Fall 2017

Abstract

Knowledge transfer in an industrial context from an existing en-
terprise to a new emerging branch is a slow and troublesome process.
To become productive, there is a vast amount of knowledge expected
to be acquired by the teammates in the emerging branch in a limited
period of time; but the teammates in the emerging branch can only
process so much knowledge in a limited time frame. By using a hybrid
approach between face-to-face communication and proper documen-
tation, colleagues at the new branch are able to grasp the required
knowledge faster with minimum help from mentors. The knowledge
transfer process between branches can therefore be optimized for the
time restrictions and minimize the time it requires for the new branch
to be ready for production.

1

1 Introduction

Opening new branches is a common step for expanding companies. This
enables a pool of resources that enterprises would not be able to obtain oth-
erwise, such as special talents, legal benefits, or financial gain [2]. However,
opening a new branch is accompanied by a set of inherent challenges.

One of the main challenges in this process is transmitting the knowledge,
culture, and mechanisms necessary for the coworkers in the new branch to
perform their tasks adequately. This knowledge transfer process is particu-
larly complex in the context of opening a new branch for two main reasons:
First, there is an uncommonly large number of new coworkers joining the
company through the new branch, usually in a distant location, all of which
require domain specific knowledge. This is different from other more studied
cases, such as transferring knowledge to a newcomer that joins an already
existing branch. Second, there is a limited amount of knowledge that can
be processed by the new coworkers in a particular time frame, and often
the volume of knowledge required to be processed by the new coworkers is
overwhelming for the limited time frame.

Domain specific knowledge is one of the key assets to maintaining com-
petitiveness in software enterprises. To sustain competitive advantage, com-
panies must assess their knowledge resources and establish their knowledge
strategy [3]. In this context, the value of effective knowledge transfer becomes
crucial.

I have had the opportunity to work in diverse contexts of knowledge
transfer in an industrial environment. I will compare and contrast my expe-
riences, with an emphasis on the latest experience I had before joining the
PhD program, wherein a large, well-known enterprise opened a new branch
in Costa Rica.

2 Knowledge Management and Transfer

Knowledge is one of the most important organizational resources that en-
terprises possess. The transfer of this knowledge, especially from senior to
junior collaborators, is key to maintaining, augmenting, and making proper
use of that knowledge base. Knowledge management is the process of dealing
with the management of knowledge and its related activities. The main goal
of these activities is to make the enterprise act as intelligently as possible to

1

secure its viability and overall success, and to realize the best value of its
knowledge assets [12].

Organizing the process of passing down knowledge has noticeable gains,
such as: financial value, operational benefits, business process improvement
and culture [6]. These translate into concrete assets such as improvements in
cost, quality, cycle time, lead time, decision making and resolved complaints.

Learning is tightly connected to the knowledge transfer process. There
are two kinds of knowledge: When you learn about something, referred to
as explicit knowledge; and when you learn to do something, called tacit
knowledge [4]. Cognitive learning is when someone learns about a topic,
as opposed to behavioral learning which refers to the act of learning to do
something. In the case of knowledge transfer in a industrial environment,
collaborators need both cognitive and behavioral learning.

When newcomers join a new software project, they typically find them-
selves in an unfamiliar project landscape. There are three primary factors
that impact newcomers’ success when facing a new project: early experimen-
tation, internalizing structure and culture, and progress validation [5]. These
three main factors have a strong connection to knowledge transfer.

Knowledge transfer in an industrial context can take mainly two forms:
face-to-face interactions between one or several apprentices and a mentor,
or documentation (i.e. internal comments in the code, external documen-
tation, educational videos, directives, etc). Other practices that boost the
quality of the learning process are, for example, to appoint mentors whom
share recent contextual information and focus on related issues [10]. Provid-
ing support for selective information disclosure that maps to the newcomers’
mental models becomes a crucial part of the learning experience. This en-
ables collaboration between apprentice and mentor, and sharing of ideas and
reflections, enhancing the overall learning process [9]. Constant interaction
and geographical proximity between mentor and apprentice also enhance
communication, as well as practices such as openness, honesty, trust, respect
and transparency [11].

Documentation is especially important when face-to-face interaction is
difficult to obtain. Documentation is particularly important for the software
components that are intended to be reused the most [8]. Parnas mentions
that even when software components are built using good design, he does
not see them being reused if they are not well documented. [1].

In both cases, current collaborators guiding the newcomers is crucial.
Face-to-face human guidance is invaluable since it is a two-way dialog. Doc-

2

Table 1: Comparison of four different experiences
Experian UCR Rutgers Intel

Worked for 1 year 4 years 9 months 1 year
Size of product 1M+ loc small products ∼5k loc ∼5k loc
Work location In-Office Remote Remote In-Office
Team size 7 developers 5 developers 2 developers 3 developers
Number of sites 3 sites 1 sites 1 sites 2 sites
Main language Java Java Php C#
Part/Full Time Full Part Part Full

umentation, although valuable, is a mechanism where information travels in
just one direction and usually lacks detail [5].

3 Work Context

Between 2010 and 2014, I formally worked for four companies: Experian
Credit Score Reporting Services (Experian), The University of Costa Rica
(UCR), Rutgers University - The State University of New Jersey (Rutgers),
and Intel Corporation (Intel). All of these companies have a different set of
working environments and transmitted knowledge in different ways. Table 1
shows a summary of these experiences, including the length of time I worked
for the company, the approximated size of the product I worked on, whether
the work was remote or in-office, the size of my team, the number of sites the
team was distributed over, the main programming language, and whether it
was a part- or full-time position.

3.1 Experian - Credit Score Reporting Services

In the Fall of 2013, I was offered a position at a new branch of Experian -
Credit Score Reporting Services, as a Software Developer II in the site located
in Heredia, Costa Rica. Experian is a well-known company worldwide, with
over 16,000 employees. Their business encompasses credit reporting, but also
other products such as decision analytics, marketing assistance and identity
theft. I learned that me and the other newcomers would be working mainly
with two other branches: Costa Mesa, California, and Santiago, Chile.

The branch in Costa Mesa was well established, with some employees

3

having worked for over 20 years in the company. The Costa Rica branch
(which I had just joined) was the latest addition to this growing community.
I was the third employee in the Identity Theft field; the other two employees
were hired a couple of weeks before me. When I left the company a year
later, the Identity Theft area had over 25 employees and it kept growing.

I worked with a couple of different groups, each building a distinct prod-
uct. In this sense, Experian was similar to how research is produced in
academia: A person works with several groups composed of collaborators
with different backgrounds and diverse levels of expertise.

The main project I worked on was a tool for identity theft prevention to
increase the security of end users. When end users want to check their credit
score, they go to the Experian website and provide authentication informa-
tion. If the information provided is below a certain threshold of accuracy, our
tool is invoked. We would collect information from other companies about
the customer, and ask questions about personal information that only this
particular individual should know(e.g.: their eye color as reported in their
driver’s license).

I worked on this project for a year. Throughout that year, the process
of understanding this massive code base was an uphill experience for me, in
part because the code was rarely documented and there were no accessible
mentors to ask for guidance. Similar to me, new employees where being
constantly hired for the new Costa Rican branch, and they had to go through
a similar learning process. My previously mentioned experience falls into a
large umbrella of challenges faced by companies when dealing with knowledge
transfer. From my experience, the challenges the enterprise faced included
the following:

• There is institutional knowledge that needs to be transferred to the new
branch. There is no single expert with the entirety of the necessary
knowledge to be transferred. Instead, knowledge is spread out among
a large number of different collaborators. Enough of this knowledge
needs to be transmitted from the employees in the older branches to the
employees in the new branch for them to be able to perform their work
adequately. In my experience, if I wanted to understand a particularly
difficult section of code, I would ask a developer working on that code.
This developer could tell me specifics about this module in particular,
but would not know for example, where the module is being called or
where do the parameters come from.

4

• The differences in pace and knowledge between the team in the well-
established branch and the new branch. In the former, business knowl-
edge is internalized and well understood by the employees; as opposed
to the employees of the new branch who just started working for the
company. By contrast, in the old branch the employees usually have
limited knowledge of new tools, frameworks or technologies overall. In
the new branch, the opposite was common: a team of young developers
full of knowledge regarding the latest technologies and used to work-
ing at a very high pace, but without the business knowledge for this
particular company.

• The fact that the core business logic product, the concept of a “credit
score”, was not commonly used or known in the cultural context of
the new branch. In Costa Rica, credit scores are rarely used. This is
by contrast with the United States, where customers’ credit scores are
checked if they want a cell phone plan, rent an apartment or open a
bank account. In Costa Rica, credit scores are used mostly for long
term loans such as mortgages, and companies do not require your au-
thorization to check it. Therefore, even if your credit score is checked,
you would not know about it, which makes the concept of the “credit
score” not well-known or fully understood in the new branch’s local
culture.

• Resistance to change by the employees in the old branch whose voice has
more weight because of seniority. This is contrasted with the employees
in the new branch, who have new ideas that can be implemented in
the company, but also lack experience and knowledge regarding how
the company works. I noticed this the most when the employees of the
new branch suggested the use of Jenkins to track development progress.
Even though we got a thumbs up to start using it and we did, the more
senior developers refused to, because they did not want to spend time
learning to use a new tool.

• Difficulties introduced by location disparities such as geographical and
time zone differences. These lead to challenges in the development
process, specially difficulties with communication and synchronization
efforts. This was more noticeable in the mornings. We started work-
ing at 7am Costa Rican time, while the team in Costa Mesa usually
started working at 11am in Costa Rican time (9am California time).

5

This usually meant that if we needed clarification or any kind of com-
munication, we needed to wait several hours every day to be able to
interact with the more experienced team.

3.2 Past Experiences

It is particularly interesting to compare to my other past experiences which
map to more traditional forms of knowledge transfer, because of the diversity
and lessons learned they contribute to my understanding of how knowledge
is transmitted.

3.2.1 University of Costa Rica

At The University of Costa Rica, I worked as a Web Developer and Web-
master. The institutional knowledge in this case was minimal. I worked for
a research center, with a small team of developers. We constantly received
requests to build small products or implement changes to existing products.
These tasks usually took between one and six months to build. The previous
Webmaster was a single person who knew the high level details for most of
the products. He possessed, to a large extent, all the knowledge necessary to
perform properly as a Webmaster in this context.

In this case, the knowledge transfer experience I had was approximately
three hours with the previous Webmaster. He very kindly indicated to me
the knowledge he thought was necessary for me to perform well, while I asked
any questions I could think of. The biggest limitation in this experience was
the time constraint: I had only one meeting with this person.

Ultimately, three hours of training was not quite enough for a position
that I held for four years. It quickly became a very challenging experience
for me, largely because I had to learn most of the technical knowledge and
business logic on my own. This presented the steepest learning curve of all
my experiences. The majority of the knowledge I obtained was not provided
by anyone within the company, but rather via third party sources or by my
own experimentation. For example, we used several different frameworks and
plug-ins. I had to look for and read the documentation of these frameworks
and plug-ins to understand how they worked. When I couldn’t find docu-
mentation to read, I relied on other learning mechanisms such as modifying
the source code and re-running it to compare its behavior before and after
the changes where performed.

6

Unlike my other experiences this company had a very weak knowledge
transfer mechanism. This resulted in considerable time spent by the newcom-
ers looking for knowledge that was not passed down to them. The newcomers
took much longer to be able to obtain knowledge that was already present
in previous developers, and could have been learned in a more straightfor-
ward way if the knowledge was properly handed down to them in the form
of documentation or face-to-face communication.

3.2.2 Rutgers University

My 9-month experience as a Web Developer in Rutgers University is interest-
ing to contrast with the others because the knowledge transfer was written,
not verbal. The source code was really well documented, but the person
who had written the comments had already left the position. Having written
documentation was advantageous because I could access it where/whenever
it was most convenient for me. But it does not have the dialog that face-
to-face mechanisms provide, which is particularly helpful when I had doubts
not covered by the documentation.

When I applied for this position, I was first interviewed by the director
of the department, a non-technical person. He broadly explained to me that
I was going to perform several changes to a program used by the department
for record keeping, staff training, etc. Once I started the job, the director
gave me the password to the server and told me to familiarize myself with
the program (approximately 5,000 LOC PHP program). At this point I had
to go through the program understanding what it was supposed to do, read-
ing the comments, running it in different ways, making small changes to the
functionality and re-running it to confirm that I was properly understanding
the functionality. After a couple of weeks of doing this I was able to under-
stand generally how the program worked and how to perform the changes I
was asked to implement.

3.2.3 Intel

Finally, I worked at Intel Corporation, where I was hired as a Software De-
veloper in February of 2012. I joined a group of 3 people (myself included):
two developers (located in Costa Rica) and one project manager (located
in Arizona). Both branches had existed for over 20 years and the working
culture had been well assimilated and internalized. This helped soften my

7

immersion into the work environment since I had to only adapt to the already
existing working culture(as opposed to Experian, where we were creating a
culture from scratch).

One important factor that made my transition more pleasant regarding
knowledge transfer was that the other developer I was working with was
knowledgeable. He knew the technologies and processes being used in this
team very well. He was also highly available. We worked in the same cubicle
and when I needed further explanation of any given task, his proximity and
willingness to help softened my learning curve making me learn much faster.
Also, since we were regular co-workers, knowledge transfer did not have a time
limit (unlike my experience at the University of Costa Rica), so knowledge
could flow in my direction very naturally in an ad hoc basis.

4 Reflection

In my experience, a hybrid approach using both face-to-face and documenta-
tion is the best and fastest way to help newcomers to adapt and understand
a new landscape. In the experiences where I had a good balance between
documentation and face-to-face time (such as at Intel), I was able to learn
much faster and assimilate the code than I could when I had only documen-
tation (Rutgers) or very limited face-to-face interactions with the mentors
(Experian and UCR).

Previous studies have focused on the difference between explicit knowl-
edge and tacit knowledge (learning about something versus learning to do
something) [4, 3]. Both types of knowledge are important from a software
engineering perspective. I focus on the differences between knowledge ac-
quired through one-way communication (e.g. code documentation) versus
two-way communication (e.g. face-to-face knowledge transfer). Documenta-
tion (one-way communication) is a common practice in software engineering,
and mentors’ help (two-way communication) usually involves senior develop-
ers, whose time is valuable.

I have also validated with my personal experience key insights from pre-
vious literature. For example, I have observed that early experimentation
(UCR and Rutgers) and progress validation (Intel) are key features in the
learning process of software projects [5]. I have also witnessed the advantages
of learning from an active developer with social skills [10] and geographical
proximity [11] (Intel and Experian).

8

4.1 One-way Communication

I have observed that proper internal documentation is the most important of
all the forms of documentation for new developers to understand the purpose
of the code they will be working with. This includes meaningful names for
classes, methods and variables, clean code, and developer written comments.

The importance of this particular kind of documentation comes from the
fact that it is immediate. Newcomers go through the code to try to un-
derstand it by making sense of the developer written comments and class,
method, and variable names. They go through a cognitive matching process
between the expected behavior of the program and the code. If such com-
ments, functionality and component names match the developers’ mental
model of the program expected behavior, then the knowledge transfer will
be immediate and effective.

Unfortunately, in my experience, developer written comments are very
rarely updated, which results in comments that do not match what the code is
currently doing. Throughout all my experiences I saw outdated comments on
a daily basis, though less frequently when using software meant to be highly
reproducible(e.g., frameworks). In all other cases, where understandability
was not a priority, outdated comments were a common problem.

This leads to newcomers not trusting the comments. Outdated docu-
mentation is in general a well known problem in software maintenance [7]
and this is a scenario where we can see in a very clear way the impact of
this problem, since it interferes with the knowledge transfer process and the
newcomer learning experience.

4.2 Two-way Communication

In my experience, two-way communication between newcomers and mentors
represents a much smaller component of the knowledge transfer process. One
of the main reasons behind this is that senior developers’ time is a highly
valued asset which must be used for high priority tasks, and often knowledge
transfer to newcomers does not qualify as such.

In my experience, this kind of knowledge transfer is less necessary when
the documentation in the project is of high quality. As documentation quality
decreases, the need for a mentor increases. This can be described as an
inversely proportional relationship between the quality of the documentation
in the project and the time needed to be spent by both the mentor and the

9

newcomer in face-to-face communication.
In my experience at Rutgers, for example, the internal documentation of

the project was of high quality. Therefore the need for a two-way documen-
tation was lesser than my experience at Experian, where the documentation
was of low quality and I needed much more mentorship.

4.3 Conclusion

From my experience, the most important of the different kinds of documen-
tation, is the internal documentation which encompasses names of classes,
variables, methods, and developer written comments. The importance of
this comes from the immediateness of this kind of documentation to satisfy
doubts the newcomers may have. Anecdotically, this is the most commonly
used source of information by newcomers. Two-way communication is needed
in a inversely proportional manner to the quality of said documentation.

Some high level factors that can highly improve the learning experience
of newcomers when joining a new software project are:

• The presence of both documentation and an expert, with emphasis in
the former

• Knowledgeable and available mentor(s)

• Include newcomers into already existing teams with an already defined
work culture

I can derive from this information that applying best practices from code
maintenance literature such as using meaningful names for classes, variables,
and methods in the software being built, and constantly updating the de-
veloper written comments is optimal for the knowledge transfer process in
newcomers. Therefore making the need for two-way communication between
newcomers and mentors minimal. This is particularly advantageous in the
context of knowledge transfer when opening a new branch since it maximizes
the volume of knowledge gained by the overwhelming number of newcomers
in the new branch, and minimizes the need for mentors, which are particu-
larly scarce in this scenario.

10

References

[1] F. P. Brooks Jr. The Mythical Man-Month Essays on Software Engi-
neering. 1995.

[2] E. Ceruttia, G. DellAricciaa, and M. S. M. Peria. How banks go abroad:
Branches or subsidiaries? In Journal of Banking and Finance, vol-
ume 31, 2007.

[3] E. Civi. Knowledge management as a competitive asset: a review. In
Marketing Intelligence & Planning, volume 18, pages 166–174, 2000.

[4] S. Cook and J. Brown. Bridging epistemologies: the generative dance
between organizational knowledge and organizational knowing. In Or-
ganization Science, 10, pages 81–400, 1999.

[5] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. P.
de Vries. Moving into a new software project landscape. In International
Conference on Software Engineering, ICSE ’10, 2010.

[6] F. Ibrahim and V. Reid. What is the value of knowledge management
practices?, 2009.

[7] T. C. Lethbridge, J. Singer, and A. Forward. How software engineers use
documentation: the state of the practice. In IEEE Software, volume 20,
pages 35 – 39, 2003.

[8] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini. What should
developers be aware of? an empirical study on the directives of api
documentation. In doi:10.1007/s10664-011-9186-4, 2011.

[9] M. N. Razavi and L. Iverson. A grounded theory of information sharing
behavior in a personal learning space. In Computer Supported Coopera-
tive Work, CSCW’06, 2006.

[10] I. Steinmacher, I. S. Wiese, and M. A. Gerosa. Recommending mentors
to software project newcomers. In International Workshop on Recom-
mendation Systems for Software, RSSE 2012, 2012.

[11] E. Whitworth. Agile experience: Communication and collaboration in
agile software development teams, 2006.

11

[12] K. M. Wiig. Knowledge management: Where did it come from and
where will it go? In Expert Systems With Applications, volume 13 of 1,
pages 1–14, 1997.

12

