Journal of Computer Languages 69 (2022) 101087

Contents lists available at ScienceDirect " ama=COMPUTER
LANGURGES

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

Language impact on productivity for industrial end users: A case study from n

Check for

Programmable Logic Controllers

Felipe Fronchetti ", Nico Ritschel ”, Reid Holmes ®, Linxi Li ?, Mauricio Soto ¢, Raoul Jetley ¢,
Igor Wiese ¢, David Shepherd *

2 Virginia Commonwealth University, USA

b University of British Columbia, Canada

¢ Hitachi ABB Power Grids, USA

4 ABB Corporate Research, India

¢ Federal University of Technology — Parand, Brazil

ARTICLE INFO ABSTRACT

CCS Concepts: Industrial workplaces increasingly require end-users to create programs for embedded systems, but little
Software and its engineering expert scrutiny has been devoted to studying this domain. As a result, industrial end-user programmers may
Visual languages rely on programming languages and development environments that do not necessarily follow the state-
Keywords: of-the-art of software engineering. Consider Ladder Logic, the most popular language used to program the
Ladder Logic most widely deployed type of industrial hardware, programmable logic controllers (PLCs). Ladder Logic’s
Programmable Logic Controllers fundamental design is based on electric relay circuits that have long since disappeared from practice. Does
Industrial end-user programming Ladder Logic inhibit the productivity of end-user programmers, slowing progress in industrial settings like

manufacturing sites and scientific labs where it is widely used? To better understand the usage of domain-
specific languages in industrial practices, we conducted a survey with 175 technical employees from an
international engineering conglomerate. This survey introduced participants to Ladder Logic and asked them
questions that all programmers, including novices, should answer with ease. Nearly 70% failed, including those
with previous Ladder Logic experience. We combined end-user performance with answers in an open-ended
question, where many employees complained about the programming language. The breadth and depth of these
struggles suggest that outdated languages, which industrial end users must increasingly use, could dramatically
impact productivity and that further studies on these industrial end user programmers be necessary to better
support them in their increasingly complex workplaces.

1. Introduction and business (e.g., [12-15]) languages to great extent, industrial end-
user programming (e.g., [16-18]) remains comparatively unexplored.

Advances in technology make programming an essential everyday Except for pioneering work on analyzing code smells in LabVIEW [19,
task in a growing number of industries [1]. To keep up with this, 201, little work has focused on industrial languages. Worse yet, there is

organizations depend on more of their employees to be able to program
instead of relying only on dedicated software developers. These end-
users require specific support by tools that are easy to learn and use,
often referred to as low-code environments, as they allow end-users to
create software while writing little or no traditional source code. This
demand has led to a thriving market for domain-specific programming
languages as part of the low-code movement [2].

New low-code solutions appear rapidly for applications in indus-

little standardization: new, supposedly end-user friendly, programming
languages constantly enter the market, and once popular languages
rarely disappear entirely [21].

Many industrial languages introduce new visual paradigms with
the intent to be user-friendly [17] or relate to domain-specific no-
tation [22]. Some languages also use or combine existing paradigms
like dataflow-based [17,23,24], graph-based [25], block-based [26],

try [3,4], business [5], computer science education [6], and a wide or analogy-based programming [27]. Some of these paradigms been
array of end-users domains [7-9]. However, not all of these areas regu- evaluated empirically, showing great promise [28,29]. However, most
larly face scrutiny and methodological evaluation: While previous work languages from the industrial realm that are used today are Legacy
has analyzed, categorized, and standardized educational (e.g., [10,11]) Languages that were created by practitioners in their domain and have

* Corresponding author.
E-mail addresses: fronchettl@vcu.edu (F. Fronchetti), ritschel@cs.ubc.ca (N. Ritschel), rtholmes@cs.ubc.ca (R. Holmes), lil24@vcu.edu (L. Li),
mausotog@hotmail.com (M. Soto), raoul.jetley@in.abb.com (R. Jetley), igor@utfpr.edu.br (I. Wiese), shepherdd@vcu.edu (D. Shepherd).

https://doi.org/10.1016/j.cola.2021.101087

Received 30 June 2021; Received in revised form 24 December 2021; Accepted 24 December 2021
Available online 6 January 2022

2590-1184/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cola.2021.101087
http://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2021.101087&domain=pdf
mailto:fronchettl@vcu.edu
mailto:ritschel@cs.ubc.ca
mailto:rtholmes@cs.ubc.ca
mailto:lil24@vcu.edu
mailto:mausotog@hotmail.com
mailto:raoul.jetley@in.abb.com
mailto:igor@utfpr.edu.br
mailto:shepherdd@vcu.edu
https://doi.org/10.1016/j.cola.2021.101087

F. Fronchetti, N. Ritschel, R. Holmes et al.

u| _Sensor Piston | ST”ST" Pjstt\)n ‘
ON ON

g [\ |/

H OFF OFF

Fig. 1. Example code for a recycling plant in Ladder Logic, explained in detail in
Section 2.

faced almost no scrutiny from language designers, especially with
respect to the challenges industrial end-users, in contrast to profes-
sional software developers, experience using these languages. The few
known studies of these languages were conducted decades after their
creation [30,31] and have had no discernible impact on the languages
or their programming environments. This raises the question, have
we accidentally created a two-class system for end-user programmers?
As business-oriented end-users enjoy huge leaps in productivity due
to the innovations from academic research [32] and the low-code
movement [5], have we left industrial end-users, who traditionally
program manufacturing lines and other embedded systems, behind to
languish in a 1970s programming purgatory?

This paper seeks to identify the challenges industrial end-user
programmers face with the languages they must use. Specifically,
we focus on industrial end users programming the most widely used
programmable hardware in industry, Programmable Logic Controllers
(PLCs), as determined by its 11.21 billion USD market in 2020 [33].
PLCs, which are used to control small to medium scale industrial
automation tasks, can be programmed using five different languages, as
defined in IEC-61131-3 [22]. Of these Languages Ladder Logic [34] is by
far the most used and is therefore the subject for this investigation. It is
so popular that, while no other language from this standard is ranked
in the top 100 programming languages in use today, Ladder Logic is
ranked as the 50th most used language, ranking above CoffeeScript and
Racket, among others [35], despite its domain-specific deployment.

Programs written in Ladder Logic, as shown in Fig. 1, look similar to
hard-wired circuit diagrams that were popular in the 1970s. Originally,
the popularity of these diagrams helped make Ladder Logic easy-
to-learn and easy-to-use for engineers without formal programming
training [22,36], but the prevalence of these domain-specific diagrams
has faded over time [37]. Because Ladder Logic originated from these
diagrams instead of a well-understood programming paradigm, no
previous work has thoroughly investigated its learnability or usability,
or its ultimate effect on end-user productivity.

In this paper we present an evaluation of Ladder Logic with several
beginner-level programming tasks to assess their programming compe-
tence (often referred to as a FizzBuzz tasks) that we conducted with 175
professional engineers from a multi-national engineering conglomerate.
FizzBuzz questions, made popular in technical job screening interviews,
are meant to test the most basic level of skill in a programming
language [38]. If a job candidate could not answer a set of given
FizzBuzz questions with 100% accuracy they would not be considered
competent in that language and likely fail the job screening. Our test
consisted of 10 questions that we designed with a similar goal in
mind. Our study results show that nearly 70% of users failed our
FizzBuzz test for Ladder Logic, including users with previous Ladder
Logic experience. Furthermore, these results are not the result of a
single difficult question—10% to 25% of participants answered each
individual question incorrectly—demonstrating a consistent failure rate
across questions. Mirroring their difficulties in a follow-up satisfaction
survey, users rated Ladder Logic’s usability to be only “fair”.

To better contextualize their performance, we also collected 98
comments from participants about usability challenges and concepts
they considered particularly difficult. Multiple participants complained
that Ladder Logic programs became too large and found that data
dependencies made programs too hard to read. This is remarkable since
all of the programs shown to participants were orders of magnitude

Journal of Computer Languages 69 (2022) 101087

v

ShAs s A

gj

1

Fig. 2. MORPHA [39].

smaller and less complex than real world programs. While experience,
both with programming and with PLC programming, helped users per-
form slightly better, many experienced users argued that Ladder Logic
was really only useful as a learning language. These findings, together
with the high failure rate, show that there is a measurable, negative
impact on productivity caused by ignoring the hard-won lessons of
modern programming languages.

Unfortunately, incremental improvements may not be enough to
redeem legacy languages like Ladder Logic. Even with significant im-
provements to both the language and the supporting tooling fundamen-
tal challenges may remain, and thus we believe the most promising way
forward would be to replace this language entirely. However, as any
replacement language has the potential to become a legacy language
itself in the future, we consider it crucial to learn from the mistakes of
Ladder Logic.

Does this happen? Consider this, the MORPHA language for the
intuitive programming of robots was created in 2002. Its primary
innovation was its use of icons to represent robot instructions [39].
Even though it had the backing of two major robot manufacturers it
failed to gain traction in industry, primarily because users found it
difficult to remember the meaning of each icon [41]. Unfortunately,
because this experience remains largely undocumented, industry was
doomed to repeat this mistake. In 2018 a new robot programming
language was created for the Franka Emika robot [40]. As shown in
Fig. 3, other than superficial differences (e.g., horizontal vs vertical
layout and improved graphics), this new language’s use of iconography
is nearly identical to MORPHA’s failed approach, which is shown in
Fig. 2.

Through our investigation of the challenges faced by industrial end-
user programmers, we demonstrate that their effectiveness program-
ming embedded systems is hampered by their current programming
languages. By examining the industrial end-users feedback and task
performance, we have identified a series of evidence-based language
design observations that could improve the software development ex-
perience for these users. We hope that this feedback can help provide
evidence to inform future language design, enabling improved state-of-
the-art programming tools and languages for industrial end-users, ul-
timately increasing their productivity while performing these complex
tasks.

The remainder of the paper provides the details necessary to un-
derstand and replicate our work. Section 2 provides the necessary

F. Fronchetti, N. Ritschel, R. Holmes et al.

t

Journal of Computer Languages 69 (2022) 101087

Repetition N
N A @ T maonone .
NoD 12 M' CB; 7 WAIT -9
PRESS ~DRAG TAP
TASKs APPs
00000 & & o &S
Product Asser 00000
00000 T W S ASB N
O & H#H F = g & &
A 8

Fig. 3. Franka Emika [40], created 16 years after MORPHA, uses a similar approach to iconography even though MORPHA’s iconography was a major contributor to its failure.

background to those unfamiliar with PLCs and Ladder Logic. Section 4
describes the research questions and the survey used to investigate
these questions. Section 5 provides the details of our results and Sec-
tion 6 discusses some of the implications of the results. Section 7
identifies the possible limitations of our research method and Section 3
places our work in the context of existing investigations on this topic.

2. Programming PLCs with ladder logic

To illustrate a typical use case for Programmable Logic Controllers
and Ladder Logic, consider the following industrial process: A recycling
center regularly receives a mix of metallic and plastic refuse that is
dumped on a moving conveyor belt. Before the plastic can be recycled,
the metallic materials need to be sorted out. While the recycling center
could hire employees to manually identify and remove the metallic
materials, this solution is not cost-effective and human workers have a
low accuracy at this type of task [42]. Instead, the recycling plant could
use an inductive sensor that detects metallic objects and a pneumatic
piston that automatically pushes metallic items off the conveyor. This
strategy is cheaper and more effective than using human workers, but
it requires some initial effort to set up and connect the individual
components.

Programmable Logic Controllers are digital computers that connect
hardware components like the sensor, conveyor and piston in our
example [43]. Although similar to conventional computers in terms of
architecture, PLCs were designed to withstand to the adversities of in-
dustrial environments, including problems such as dirt, dust, variations
of temperature, humidity and noise [44-46]. Compared to just wiring
all the components together directly, PLCs reduce the effort to set up
the system and, more importantly, make changes in the future. Since
the inputs and outputs from all hardware flow through the PLC, the
recycling plant could easily add more pistons or sensors and connect
them without re-wiring the existing hardware. Instead, all they have to
do is re-program the PLC.

PLCs are usually programmed using software provided by the PLC
manufacturer. This software is installed on a conventional computer,
and programmers only transfer their final, compiled code to the PLC
for execution [47]. Although some PLC manufacturers support of tra-
ditional programming languages like C or Pascal, most PLCs follow
the standards defined by the International Electrotechnical Commission
(IEC) [48,49]. The IEC 61131-3 standard defines the five programming
languages for PLCs, which include: Ladder Logic (LD), Function Block
Diagrams (FBD), Structured Text (ST), Instruction Lists (IL) and Sequen-
tial Function Charts (SFL) [47,49,50]. Ladder Logic is the most popular
of these five languages [35,36,51].

Ladder Logic is a visual programming language designed to resem-
ble the relay logic schemes used in hard-wired circuits [52-54]. Ladder
Logic visualizes programs as diagrams that use symbols representing
input and output devices such as buttons, switches or motors. These
symbols are connected by vertical and horizontal lines that describe
the program logic as a circuit. Every diagram must at least have
two vertical lines on opposite sides that are called power rails [52].
Horizontal lines connect the two power rails and create the rungs of
the ladder. Horizontal lines can branch or merge and always connect
one or more input and output symbols with each other.

Consider the industrial process of the recycling plant we presented
earlier. Fig. 1 shows a truth table for scenario (left) that directly
connects the inductive sensor and the pneumatic piston. The right side
of the figure shows the encoding of this program in Ladder Logic. The
Sensor is represented as a normally open input contact, which means
that the circuit is only closed when the sensor is activated. The Piston
is represented by an output contact. The overall diagram can be read
as follows: “When the inductive sensor is on, then the pneumatic piston is
on.".

Ladder Logic can be used to represent a wide variety of concepts.
For instance, Fig. 4 shows three separate Ladder Logic programs and
their truth tables, representing the operators NOT, AND, and OR in
boolean logic. These can be used as building blocks for more complex
programs. In the first diagram, the input contact labeled Input is a
normally closed contact, meaning that the circuit is only closed when
it is not activated [55]. The other two diagrams use more established
circuit notation and can generally be read as follows: “Output are on
when they lie on a closed circuit that connects the two power rails.". The
training video' that we used in our survey can provide an additional
understanding of the Ladder Logic language.

3. Related work

In this section we first discuss PLCs and their historical use of wiring
as programs, and how that led to the ladder logic language. We then
describe the many educational languages that have been developed to
make programming easier for non-experts. Finally, we discuss recent
uses of visual languages in industrial settings.

3.1. PLCs
As discussed in Section 2, PLCs were created to avoid the problem

of constantly re-wiring relay logic. Instead, PLCs allow engineers to re-
program logic virtually, by making updates to the program. Modern

1 https://www.youtube.com/watch?v=V3xTa2swObk.

https://www.youtube.com/watch?v=V3xTa2sw0bk

F. Fronchetti, N. Ritschel, R. Holmes et al.

Journal of Computer Languages 69 (2022) 101087

Input Output
Input Output |l/| [\
g ON OFF [\ /
OFF ON
Input A Input B Output
oN ON oN InlputI A InlputI B OL;tp;lt
ON OFF OFF
g 1 |\)
OFF ON OFF
OFF OFF OFF
Input A Input B Output Input A output
ON ON ON | 1 [\
] ON OFF ON | \ /
OFF ON ON Input B
OFF OFF OFF | |

Fig. 4. NOT, AND, and OR operators encoded as Ladder Logic diagrams.

PLCs have been in use since the mid-1970s and standard programming
languages, as defined by the IEC 61131-3 standard in 1993, have
been in widespread use since the 1980s [56-58]. This standard defines
five different languages, three of which are graphical. Ladder Logic,
one of these languages, is perhaps the most popular language. It has
been claimed that 50% of America’s manufacturing capacity has been
programmed in Ladder Logic [59] and it is the 50th most popular
programming language overall [35].

In spite of its popularity, many have pointed out problems with the
Ladder Logic language: there are many issues with race conditions [59]
and bad actors can insert logic bombs into programs [60]. Researchers
have suggested converting Ladder Logic into other languages as part
of the compilation process due to its shortcomings [61] and have
suggested it should be replaced with a Petri-net based programming
approach [62].

3.2. Educational languages

Educators have made immense steps forward in designing lan-
guages that are easy-to-learn and easy-to-use for beginning program-
mers [6,10]. One of the leading paradigms for making new end-
user languages is block-based programming, led by the popularity of
tools like Scratch [32] and Alice [63]. Block-based programming uses
a programming-command-as-puzzle-piece metaphor to provide visual
cues as to how, where, and when a given programming command can
be used. Writing programs in block-based environments takes the form
of dragging-and-dropping commands together. When two commands
cannot be assembled to create a valid programming statement, the
environment prevents these commands from being snapped together,
thus excluding syntax errors in the authoring of programs. Block-based
programming is also becoming an increasingly wide-spread approach
to programming physical computing devices and robotics systems. A
new wave of robotics toolkits and environments are using the block-
based modality, such as OpenRoberta [64], CoBlox [11] and the
Modkit [65] and Arduviz [66] environments for programming the
Arduino microcontroller.

Research has demonstrated the various ways that block-based tools
support novice programmers [28,29] and how they can serve as an
effective way to introduce novices to foundational programming prac-
tices and computer science ideas [67-70]. Particularly relevant to the
work presented in this paper is the comparative research showing
the block-based programming approach to be effective for introducing
novices to industrial robotics programming [71,72]. Given its success
in robotics, it raises the question of whether Ladder Logic should
be improved or whether it should be replaced entirely by this new

paradigm. We believe that a careful analysis of both Ladder Logic and
block-based programming according to our design guidelines coupled
with experimental comparisons may be the best way to answer this
open question.

3.3. Visual languages in industry

In the 1990s, when several visual programming languages were
being introduced in industry, many blindly considered them to be
superior to text-based languages. This trend, dubbed superlativism,
held that visual languages were superior for all tasks, with no support-
ing evidence. Not surprisingly, researchers quickly showed that, while
visual languages like LabView were well-suited for certain tasks, the
were not superior for all tasks [73]. Researchers have since created a
foundational set of cognitive dimensions to evaluate visual languages,
allowing language designers to better understand the tradeoffs that
must be considered [74].

Since that time, many visual languages have been adopted for
robotics, both in industry and academia [75]. Behavior-trees, block
languages, dataflow languages, state-flow languages, and even trigger-
based languages have been used to program robots. Beyond robotics,
visual languages have been adopted in many different domains, and
have even been analyzed in these settings [76]. A recent survey shows
that IoT devices are perhaps the next big focus, as they found as many
papers focusing on IoT as they did on education. One such approach,
Smart Blocks, which uses block-based programming for smart home
devices, uses program analysis to avoid common programming mis-
takes [77]. For IEC-61131-3 languages researchers have even defined
metrics to help measure and avoid overly complex programs [30].
For another common industrial language, LabVIEW, researchers have
investigated code smells and their impact on performance [19,20]. The
recent focus on these languages, the study of their complexity, and how
to use tools like program analysis to make them more usable reinforces
our point that, without further help, end-users struggle to use industrial
languages.

4. Research method

In the following subsections, we describe our approach and instru-
mentation. A replication package is available to increase the repro-
ducibility of our study and results.?

2 Replication package: https://github.com/vcuse/industrial.

https://github.com/vcuse/industrial

F. Fronchetti, N. Ritschel, R. Holmes et al.
4.1. Research questions

In our study, we investigated the learnability and usability of Ladder
Logic. We further aimed to identify aspects of the language that are
particularly problematic for end-users. For this purpose we conducted
an interactive online survey with engineering employees working for a
large, multi-national engineering conglomerate.

We trained participants through a short video tutorial and then
asked them to solve a series of comprehension tasks. These tasks tested
both the participants’ ability to correctly read and to write Ladder
Logic programs. We focused on toy-sized programs that could be read
and understood quickly, making them appropriate for our survey-based
approach. We studied the performance of participants on these smaller
problems and will discuss the implications of our findings on larger
programs later.

We further wanted to understand how participants perceive Ladder
Logic, so we asked them to rate the usability of Ladder Logic using a
standardized System Usability Scale (SUS) questionnaire [78]. We fur-
ther asked participants for open-ended comments on their experience
with the language. Some of our participants had already used Ladder
Logic before our survey, so we asked them comment on issues they
encountered in practice.

To guide our investigation, we focused on four research questions:

RQ1 Can engineers solve automation sub-problems (i.e., building
blocks of full solutions) using Ladder Logic?

RQ2 What characteristics of Ladder Logic problems are most challeng-
ing for engineers?

RQ3 How easy-to-use and easy-to-learn did engineers rate Ladder
Logic?

RQ4 What insights did engineers have concerning the use of Ladder
Logic for automation?

We chose these questions to help us understand Ladder Logic’s
strengths and weaknesses while providing insight to help design future
end-user programming languages.

4.2. Survey design
We structured our survey as follows:

4.2.1. Demographic questions

We provided participants with four multiple-choice questions in
order to understand the demographic composition of our respondents.
The first question asked the participants for their current occupation
in industry. The second and third questions asked them for their
respective experience, in years, with programming and Programmable
Logic Controllers. The fourth question asked the participants which
programming languages (if any) they used previously to write code for
Programmable Logic Controllers.

4.2.2. Tutorial

After the demographic section, we provided participants with a
short 4 min, 20 s video tutorial.® This video explained the concepts
of Programmable Logic Controllers and Ladder Logic. The tutorial also
included examples of Ladder Logic diagrams, an explanation on how to
read them, as well as examples of industrial input and output devices.

4.2.3. Exercises

In the third part of our survey, respondents were asked to solve ten
short tasks involving simple automation problems. We divided exercises
into two groups. The first group contained five exercises focused on
writing Ladder Logic diagrams while the second group contained five
exercises on reading. We presented these exercises in a fixed order, with
alternating questions from each group.

3 https://www.youtube.com/watch?v=V3xTa2swObk.

Journal of Computer Languages 69 (2022) 101087

Writing. The goal of the five exercises in the writing group was to
identify if the respondents could correctly write a Ladder Logic diagram
for a given scenario. For each of the exercises, participants were given
a truth table and an animated illustration of a simple automation
problem. We then asked the participant to select the diagram out of
eight options that correctly solves the proposed problem. To better
evaluate the performance of our respondents, we made specific changes
in the seven wrong options: We changed the program’s structure, the
position of labels and the position of symbols. In Fig. 5, we present one
of the exercises of this group. The correct answer for this exercise is
option “a”.

Reading. The goal of the five exercises in the reading group was to
identify if the respondents could correctly read and comprehend Ladder
Logic diagrams. For each question participants were provided with a
diagram and then asked to identify in which cases the output symbol
of the diagram would be turned on. We gave participants five possible
answers per exercise, each varying in the states for the input symbols
that would trigger the output symbol to be turned on. Fig. 6 shows an

[7P8l]

example of a reading exercise. The correct answer is option “c”.

4.2.4. System usability scale

After the set of exercises, participants completed a System Usability
Scale (SUS) questionnaire. The SUS is a standardized, straight-forward
questionnaire that contains ten statements designed to measure the
perception of users on the usability of a system [78,79]. Participants
score their agreement with each statement from one (strongly disagree)
to five (strongly agree). The statements, adapted to contain the Ladder
Logic as the respective system under analysis, were shown to the
respondents as follows:

« I think that I would like to use Ladder Logic frequently.

+ I found Ladder Logic unnecessarily complex.

« I thought that Ladder Logic was easy to use.

+ I think that I would need assistance to use Ladder Logic.

« I found the various functions in Ladder Logic were well integrated.

» I thought Ladder Logic was too inconsistent.

+ I would imagine that most people would learn to use Ladder Logic very
quickly.

* I found Ladder Logic very cumbersome/awkward to use.

« I felt very confident using Ladder Logic.

+ I needed to learn a lot of things before I could get going with Ladder
Logic.

4.2.5. Open-ended question

In addition to the system usability scale questionnaire, and in order
to obtain a more comprehensive opinion from the participants about
Ladder Logic, an open question limited to five thousand characters was
provided, asking the respondents: “What is your opinion about Ladder
Logic? Feel free to provide any thoughts about this language”.

4.3. Survey development

To develop our survey, we followed the three-stage process recom-
mended by Dillman [80]. First, we had experts review our initial survey
to ensure clarity and avoid misunderstandings. Next, we discussed the
survey with a larger group of researchers and developers, focusing
on clarity and motivation. Finally, we performed a pilot test with
eleven respondents, including nine researchers (in industrial automa-
tion), one developer and one engineering architect, all with at least
one year of programming experience. We asked the participants to
provide feedback about the survey via email and online meetings. These
respondents were not included in the final results.

https://www.youtube.com/watch?v=V3xTa2sw0bk

F. Fronchetti, N. Ritschel, R. Holmes et al.

Journal of Computer Languages 69 (2022) 101087

Suppose the following automation task containing two switches and one

sprinkler, where to turn the sprinkler ON, the two switches must be in
opposite states. In other words, while one switch is ON, the other must be
OFF to activate the sprinkler. The possible states for the elements of this
task can be described by the table and illustration below:

ON OFF ON

Switch A | Switch B | Sprinkler
ON ON OFF
ON OFF ON
OFF ON ON
OFF OFF OFF

Using your understanding of ladder logic, select the diagram that correctly

solves this task:

Switch A Switch B Sprinkler Switch A Sprinkler
| | Il/l () | | ()
[[\ [\
@ . . © .
Switch A Switch B Switch B
Il/ |] Il/l
[[[
Switch A Switch A Sprinkler Switch B Sprinkler
| | Il/l [) | | [)
[[\ [\
(b) Switch B Switch B @ Switch A
Il/ |] Il/l
[[[
Switch A Switch B Sprinkler Switch A Sprinkler
| | |] [) Il/l [)
[[\ [\ J

(C) Switch A

4

Switch A
| | | |

Switch B

4

Switch A Sprinkler

<g> Switch B

Switch B Sprinkler

{)
| [\ /
(d> Switch B Switch B

V1

4
|
<h) Switch A

()
\ J

Fig. 5. Example of a writing exercise from the survey.

4.4. Survey execution

The final version of the survey, which is available in its entirety in
the replication package, was emailed to employees of a multinational
engineering conglomerate. We invited approximately 2,000 employees,
including those from an engineering facility in India and those with an
engineering-related job title from all over the world.

4.5. Data analysis

4.5.1. Overall performance

Focusing on the ten Ladder Logic exercises in the survey, we an-
alyzed the overall performance of participants. We focused on the
number of correct responses that each participant provided. We further
analyzed how participants’ experience, occupation, and programming
experience affected their performance.

4.5.2. Performance per question
Next we evaluated the difficulty of each individual question to
see how it contributes to participants’ performance. We also grouped

questions based on their characteristics, such as the number of rungs,
number of symbols, and the type of symbols, to investigate the impact
of these factors.

4.5.3. Usability evaluation

We calculated each participant’s raw SUS score based on their
responses to the standardized questionnaire. SUS scores cannot be inter-
preted linearly [81]. We therefore mapped the average score that par-
ticipants gave Ladder Logic to the corresponding percentile of overall
scores that other systems evaluated by the SUS received.

4.5.4. Analysis of open-ended responses

To analyze participants’ open-ended responses we employed a card
sorting approach [82]. Two researchers jointly analyzed and discussed
two sets of 10 answers to establish common set of codes. Then, each
researcher analyzed the remaining answers independently and dis-
cussed the disagreements until reaching consensus. We also employed
continuous comparison [83] to ensure the consistency in our codes and
results. Finally, a third researcher and an experience engineer inspected
the final code classification.

F. Fronchetti, N. Ritschel, R. Holmes et al.

Using your understanding of Ladder Logic, look at the diagram below and
select the answer that correctly describes this diagram:

Start Stop Heat

Button Button Sensor Boiler

—

(a) Boiler will be turned ON when at least one of the input elements is ON:
Start Button, Stop Button or Heat Sensor.

(b) Boiler will be turned ON when the Start Button and Stop Button are
OFF, or when the Heat Sensor is ON.

(c) Boiler will be turned ON when the Start Button is ON, and the Stop
Button and Heat Sensor are OFE

(d) Boiler will be turned ON when the Start Button is OFF, and the Stop
Button and Heat Sensor are ON.

(e) Boiler will never be turned ON, regardless the state of the input elements
(Start Button, Stop Button and Heat Sensor).

Fig. 6. Example of a reading exercise from the survey.

5. Results

After a brief demographic overview of our participants, we structure
the presentation of our results to follow our research questions outlined
in Section 4.1.

5.1. Demographics

In total we received 175 complete responses (approx. 9% response
rate). Fig. 7 shows the survey participants’ self-reported occupation,
programming experience, PLC experience, and known PLC program-
ming languages. As expected due to our targeted emails, most (123
of the 175) respondents were engineers. While there were also 25
respondents who selected the “Other” option, these respondents’ often
wrote in engineering-related jobs such as project managers and project
lead engineers. There were also 9 software developers, 9 researchers, 6
technicians and 1 engineering student who responded.

Nearly half of the respondents (100 of 175) claimed to have over
5 years of programming experience, and almost all (153 of 175)
claimed at least some experience. Note that while many engineers
program as part of their job, it often represents only a small percentage
of their overall responsibilities. We therefore do not assume that their
experience is equivalent to that of a professional software developer
that gave the same response. In addition to programming experience,
many respondents had experience programming PLCs directly, with
133 of 175 reporting at least some experience and 67 reporting greater
than five years of experience.

Respondents had experience with a variety of languages that are
often used in PLC programming. The most popular languages among
the respondents were: Function Block Diagrams (FBD), used by 124,
Structured Text (ST), used by 92, Ladder Logic (LD), used by 66, and
Sequential Function Charts (SFC), used by 60 respondents. Besides the
given languages, which were defined by the IEC 61131-3, a few respon-
dents used languages such as C, C++, Flow Code and Control Module
Diagrams to program PLCs. 12 respondents also defined themselves as
with no experience with programming languages commonly used for
PLCs.

5.2. RQ1I: Can engineers solve automation sub-problems using ladder logic?

To answer this question we investigated the performance of individ-
uals across the entire survey. As Fig. 8 shows, only about 30% (52 of
175) are able to answer all ten questions correctly, with the average
score being 8.5 (SD 1.8). The majority of users (69%) answered at
least one question incorrectly, with about 35% answering two or more
incorrectly. In Fig. 10 we show the breakdown of correct (green) vs.

Journal of Computer Languages 69 (2022) 101087

incorrect (red) responses per question. Most questions had a significant
number of users who answered incorrectly (Mean 26.5, SD 15.8),
indicating that there was not a single hardest question that caused most
participants to fail.

To investigate the influence of participants’ background on their
performance, we studied the performance of different participant
groups. Fig. 9 shows their performance according to each demographic
characteristic. These characteristics are experience with IEC-61131-3
languages (top), PLC programming experience (middle), and general
programming experience (bottom). As Fig. 9 shows, users’ experience
has some impact on their performance. To quantify this impact, for
each category we grouped users with no experience and users with
any experience, and then compared these two groups using the Mann
Whitney U Test, a nonparametric test that is widely used to compare
non-normal distributions [84]. Using this approach, we saw a difference
for all categories: known languages (W = 553, p = 0.02596, Cliff’s delta:
—0.37 medium), PLC experience (W = 2068, p = 0.01199, Cliff’s delta:
—0.24 small), and programming experience (W = 971,p = 0.001099,
Cliff’s delta: —0.41 medium).

Most participants failed the Ladder Logic compe-
tence test. Users with no experience in PLC or
general programming performed worse than those
with at least some experience.

5.3. RQ2: What characteristics of ladder logic problems are most challeng-
ing for engineers?

To investigate this question we categorized each of our ten ques-
tions according to the characteristics of Ladder Logic problems. For
each characteristic under investigation, we grouped questions into two
groups. We investigated many characteristics, but we present only
the most relevant comparisons: reading vs. writing-based questions,
one-rung vs. two-rung questions, and questions that contained closed-
contact inputs vs. those that did not. We then compared the percentage
score for each group using the Wilcoxon Signed-Rank Test, where the
hypothesis that two groups are identical is rejected for p-values < 0.05.
Finally, to measure the effect size we used Cliff’s Delta and interpreted
the values using accepted thresholds [85].

For the read vs. write comparison we grouped questions according
to whether they required users to read Ladder Logic diagrams or
whether they required users to write diagrams. Based on the notion
that mastery proceeds through the use-modify-create spectrum [86] we
expected user performance to be better for reading. The mean perfor-
mance for the five reading questions was 87.8 compared to 81.9 for the
five writing questions, indicating that respondents indeed performed
better on reading questions (W = 17668, p = 0.006181). The effect
size between these two means was small (delta estimate= 0.1538286),
indicating that while it was harder for users to write Ladder Logic
than to read it, the difference was not large, likely because the same
knowledge is required for both.

For the one-rung vs. two-rung comparison we grouped questions
according to the number of rungs in the questions (for reading prob-
lems) or in the correct solution (for writing problems). We expected
user performance to be better for one-rung questions because these
programs are less complex, having no possibility for intermediate val-
ues and being less complex overall. On the five questions with one
rung, respondents had a mean score of 87.3 whereas on two-rung
questions they scored 82.4, indicating that there was some difference
(W = 17122, p = 0.03556). However, in this case the effect size was
negligible (Cliff’s delta: = 0.11), and thus further investigation, possibly
with multiple-rung programs, is needed to establish a clear difference.

When comparing questions with normally-closed contact inputs
(i.e. boolean negation) vs. those without, we believed that users would

F. Fronchetti, N. Ritschel, R. Holmes et al. Journal of Computer Languages 69 (2022) 101087

Occupancy Programming Experience PLC Experience Known Languages
Engineer | No experience - No experience - Y —
other [" s
Researcher [] < vear . < 1vear .)
1-2 Years . 1-2 Years - Rl m—
Software Developer [] No experience [
Technician [] 3-5vears [3-5 Years - Lo
Eng. Student | s+ Vears [N S+ Years [T oOther [J
L L
0 30 60 90 120 0 30 60 90 120 0 30 60 90 120 0 30 60 90 120
Respondents Respondents Respondents Respondents

Fig. 7. Demographic composition of participants: Occupancy, programming experience, PLC programming experience and known programming languages.

00010203 04 @5@6 @7 08 09 @10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage

Fig. 8. Breakdown of participant performance (e.g., only about 30%, in green, answered all 10 questions correctly).

oo o1 o2 o3 o4 @5 @6 @7 os a9 @10

Known Languages
Ladder diagram (LD)
Structured text (ST)
Other
Function block diagram (FBD)
Sequential function chart (SFC)

No experience

Instruction list (IL) |
PLC Experience

1-2 Years |
5+ Years

<1Year

No Experience

Hﬂ

!
il

3-5 years

Programming Experience
<1Year
1-2 Years
5+ Years
3-5 Years
No Experience

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage

Q
X

Fig. 9. Breakdown of performance, as effected by previous experience (e.g., only about 10% of those with no programming experience answered all 10 questions correctly, as
shown in green on the bottom third, bottom bar labeled “No Experience”).

OCorrect @ElIncorrect

a1 160 [15]
Q 170 [5]
a3 140 [s]
Q4 121 _
as 155 T
Q6 153 [22]
a7 130 [&]
a8 159 [16]
Q9 139 [36 |
Q10 165 [10]
0% 0% 20% 30% 40% S0% 60% 70% 80% 90% 100%
Percentage

Fig. 10. Performance of respondents for each individual question. The number inside each bar indicates the absolute number of respondents in each group.

F. Fronchetti, N. Ritschel, R. Holmes et al.
35 4
30 A
25 4
20 4

15 A

Respondents

10 A

o o 0 o o o
R L K3

\M o]
2 o &

&> gx”@

SUS Score

Fig. 11. Distribution of SUS scores.

be more likely to struggle with the former because in our own expe-
rience this type of contact is not as intuitive, and because previous
work has shown that negation can be challenging for users [87]. On
questions with normally-closed contacts respondents had a mean score
of 81.3 whereas otherwise they received scores of 93.2, suggesting that
normally-closed contacts were particularly difficult for users (W =
830, p = 1.13e—13). The effect size was medium (delta estimate =
—0.4075102), indicating that this type of input was the most influential
characteristic of Ladder Logic programs on user performance.

Participants performed slightly better when read-
ing vs. writing programs, worse for more complex
programs, and particularly poorly on problems that
involved negation.

5.4. RQ3: How easy-to-use and easy-to-learn did engineers rate ladder
logic?

We measured participants’ preferences using a SUS questionnaire
(see Section 4.2.4). Participants gave Ladder Logic a mean score of 69
(SD: 18, max. 100, min. 12.5). Fig. 11 shows the overall distribution of
scores that participants gave Ladder Logic. Considering the distribution
of SUS ratings for other systems, Ladder Logic’s score is only slightly
above the average score of 66 [81], placing Ladder Logic in the 50th
percentile of systems. According to a popular scale for interpreting
SUS scores, mapping scores to adjectives from “worst imaginable” to
“best imaginable” Ladder Logic’s score maps to “OK” [88]. Another
technique for interpreting scores maps it to “marginal” [89]. In both
cases both the raw score and the interpreted score are not considered
strong.

Participants rated the usability of Ladder Logic only
® as “OK” or “marginal”, putting the language in the
50th percentile of usability ratings across all systems.

5.5. RQ4: What insights did engineers have concerning the use of ladder
logic for automation?

For the open-ended question regarding Ladder Logic we received 98
non-blank answers. To curate the dataset we filtered out 17 messages
that did not expressed an opinion about Ladder Logic. For instance we
filtered out such as personal history (e.g., “Got training on LD in early
days but never used in any project”; “never used before, but I will give
it a try in the future”), opinions about the survey (e.g ‘“Very simple and
useful teaching. Thumbs up”.; “These examples are quite simple, I’d like

Journal of Computer Languages 69 (2022) 101087

Table 1

Most common open-ended comments.
Comment Occurrences
Not well-suited for large/complex projects 27
Easy to use and understand 23
Less appropriate than other programming languages 17
Works well for small/simple projects 17
Easy to learn 9
Hard to debug 6
Difficult to use and understand 5
Bad user experience 5

to see some more complex examples”) or other programming language
not evaluated in the survey (e.g “I believe ST [structured text] will be
future even in PLC world”). Our final dataset contained 79 comments
which were, on average, 186 characters long. After performing open
coding, several major themes emerged. The top eight themes, in terms
of number of occurrences, are listed in Table 1. As shown in this table,
the most common theme was that Ladder Logic is not well-suited for
large or complex projects.

Ill-Suited for Complex Projects. 27 respondents indicated their agree-
ment with one participants’ assessment that “for understanding simple
programs like turning [on] motor/lights, Ladder is ok but when we
get into complex logics of process control or some complex solution..
[Ladder Logic] is cumbersome & time consuming” or, more directly,
“[Ladder Logic is] not suited for complex tasks”. These 27 respondents
often elaborated on why they believed Ladder Logic did not work
for complex situations. Several indicated that Ladder Logic programs
quickly become too large, saying “usability in more complex softwares
isn’t that good as even with simple functions one ends up with huge
number of [rungs] which makes the general view of the code more chal-
lenging” and “..more complex functions are way too crowded/complex
in Ladder Logic”. Another elaborated that even to create a simple
“..X-Or block I need to use 2 NC & 2 No contact [gates]” and a
different respondent explained that “program length also increases due
to limitations in the NO/NC contacts in each rung, then in this case we
need to do cascading of Rungs (this increases program length)”. One
respondent summarized the issue as “[Ladder diagrams] takes too much
space to program therefore is only suitable for very simple programs”.

Another issue that respondents regularly cited as to why Ladder
Logic was not well-suited for complex projects is that the data de-
pendencies make programs difficult to understand. One explained:
“[Ladder Logic] does not work as well for sequential programming.
Trying to write this style of programming often involves a lot inter-
mediate of coils, edge detections and latches, which can be hard for
some to follow”. Others echoed these challenges, saying “..it gets more
complicated when an output function is dependent on another’s output
function. Then reading the ladder top to bottom becomes tricky in
search for the dependable” and “..[it] becomes too difficult to follow for
logic functions that interact between each other”. In all but toy-sized
projects these dependencies are unavoidable.

Participants stated that the language doesn’t scale
o well for larger programs, and that hidden dependen-
cies make complex diagrams hard to read.

Easy to Use and Learn. Interestingly, another popular theme in
comments from respondents was that Ladder Logic was easy to use
and understand. For example, one respondent said “Ladder [logic] is
simple & easy to learn”. However, upon closer inspection, respondents’
comments were almost always qualified, such as Ladder Logic is easy to
use and learn, but it has key limitations. For instance, one respondent
said “Ladder Logic is best for the beginners to learn & understand PLC
programming.”. but then immediately continued “...it is difficult to

F. Fronchetti, N. Ritschel, R. Holmes et al.

build more complex PLC programming logic using Ladder concept”.
Similarly, another qualified when Ladder Logic should be used: “Lad-
der Logic should be used for less complex solution in automation.
In this case [it] is clear, readable and simple”. Another echoed this,
saying “Ladder Logic is good for simple motor run/stop, light on/off
logic...[but] can’t be used for more complex or coordinated control
programming. The complexity of the logic will make the Ladder Logic
complex or rather useless”. While on its surface this theme appears
in conflict with the first theme, supporting details show the findings
support each other, as they agree that Ladder Logic is not suited for
complex solutions but can be easy to use and easy to learn for simple
solutions.

Several respondents argue that Ladder Logic is only a learning lan-
guage for programming PLCs. One said “..from my point of view ladder
diagram is the simplest method for learning PLC” and another “Ladder
Logic is best for the beginners to learn & understand PLC program-
ming”. However, they seem to disregard it as a serious language. One
said: “..it was like basic programming that one learns in his academics
..but when there are more simplified and better languages that can be
used in current scenario, no one wants to look towards ladder”. Another
claimed that “Ladder Logic was designed to get electricians to learn
PLC-programming in an easy way” and yet another dismissed it, saying
“..to teach the basics of PLC applications, it’s obsolete”.

1 Many participants said that Ladder Logic feels like
° a toy language that is good for beginners but not for
realistic tasks.

Other comments. In addition to the points already mentioned, a
few respondents also stated the difficulty to identify bugs in Ladder
Logic, giving focus to the idea that such language is not appropriate
for large and complex projects. One respondent said: “Initially it is
easy understand when for small programs... but when we enter in
complex programs it is very difficult to play around and find bugs”.
Two respondents also mentioned electrical circuits as a prerequisite for
understanding Ladder Logic diagrams. One said: “A programmer will
need to have knowledge about electric circuits to be able to digest this
programming language”. The second responded reaffirmed the view
of the first one by saying: “If you have experience with electrical
diagrams, ladder it’s a straight forward language... for programmers
without an electrical background, it can get complicated or not so
intuitive”.

Some participants pointed out other issues of Ladder
Logic, such as poor debugging capabilities or the
usage of notation that only electrical engineers can
understand easily.

6. Discussion

Ladder Logic is widely assumed to be easy-to-learn and easy-to-use
for end-users [46]. Our study results do not support this assumption
for industrial end-user programmers: Not only did many participants
fail the competence test, but they also rated Ladder Logic’s usability
as “OK” or “Fair” on the SUS scale. Some of the responses that we
described in Section 5.5 further indicate that participants would find
Ladder Logic difficult to apply to real-world projects. In this section we
discuss some of the aspects of Ladder Logic that the 175 industrial end-
user participants in our study struggled with. We further present several
language design observations derived from our participants perfor-
mance and feedback that could improve the programming effectiveness
of these industrial end-users.

10

Journal of Computer Languages 69 (2022) 101087

6.1. Using domain-specific notation

The first systems that used Ladder Logic as a visual programming
language were introduced in the 1970s. At that time, the language
appealed to engineers and technicians due to its closeness to the
domain-specific notation for relay diagrams. This similarity reduced
the learning effort for these user groups since they could apply their
existing knowledge of circuit design directly without having to learn a
new notation.

Over the subsequent decades, the popularity of hard-wired relays
has declined [37]. This has led to fewer engineers being familiar with
the specific notation that was used by relay diagrams. The conse-
quences of this was apparent throughout our study: multiple partici-
pants indicated that they found it difficult to read programs, particu-
larly when they use negation.

Although Ladder Logic’s history may explain why its notation be-
came obsolete, this raises the question: is it possible to design languages
to be more future-proof? Ladder Logic’s heavy reliance on symbols that
only have a meaning for users with domain-specific knowledge seems to
be a particular weakness in this regard. We believe that a lesson that
can be learned from Ladder Logic is that designers of new languages
should select symbols and notation with caution, especially with an eye
to those symbols that are unlikely to change or lose their meaning over
time. If it is not possible to find symbols that are universally known, it
can further be useful to support domain-specific notation with text.

Previous work has established some best practices for designing
block-based programming languages. Some of these findings might be
applicable to languages like Ladder Logic as well. For example, recent
work has found that end-users prefer text-based commands over icons,
even if they can understand both notations equally well [90]. Some
popular block-based languages make programs look very similar to
natural language [32]; some let users choose between a more domain-
specific notation or one that is closer to natural language [63]; many
of them have in common that they only use a small number of visual
features that make them accessible to their target audience.

Q

End-user languages with high usability ratings often
combine a small number of carefully selected visual
features with text. In Ladder Logic, the reliance on a
notation that fell out of favor has made the language
harder to understand and use.

6.2. Scalability

Many study participants with experience in Ladder Logic com-
mented that programs quickly become too complex to read. They
specifically complained about the large number of rungs that even
relatively simple programs require. We identified two separate usability
issues that users face as their programs grow: First, as each rung
requires significant vertical space, only a certain number of rungs fit on
a single screen. While users can zoom out or scroll through the rungs,
it becomes increasingly hard to maintain an overview of the whole
program. Second, because many rungs, or lines of code, are similar due
to the regularity of Ladder Logic programs, it becomes hard for users
to identify the specific part of a program that they want to edit.

Another observation is that, when a notation designed for another
purpose, like detailing relay diagrams, is co-opted as a programming
notation, this adaptation can have drawbacks. For example, Ladder
Logic’s lack of scalability only became a problem when Ladder Logic
was adopted as a programming language. When these diagrams were
simply printed (on paper), engineers could easily compare multiple
diagrams by laying them out side-by-side. They could organize sub-
systems into separate binders, effectively creating modules. However,

F. Fronchetti, N. Ritschel, R. Holmes et al.

when used as a programming language, Ladder Logic is missing these
features.

We believe that Ladder Logic illustrates the importance of not just
considering the design of a language itself but also the context in which
it is used. This can also benefit language designers, since development
environments can complement a language and overcome its weak
points. For example, many integrated development environments for
professional programming languages aid visibility and navigation in
ways that a language could not offer directly. Ladder Logic, many other
visual languages, could also benefit from a development environment
that provides such features.

Q

Industrial end-user programmers may have different
scalability needs than other users of similar nota-
tions. Development environments can fill this gap by
providing additional aids that improve visibility and
navigation.

6.3. Encapsulation and code reuse

When developers design a new end-user language, visibility should
be ideally considered early-on. One reason why Ladder Logic programs
grow fast and become hard to read is that the language has limited
support for encapsulation or code reuse. While Ladder Logic supports
add-on instructions that allow users to reuse code [91], our survey
responses show that many experienced Ladder Logic users are not
aware of this possibility. We found that add-on instructions are rarely
covered in end-user manuals and tutorials, and are particularly not
recommended as a way to structure code. We therefore see them more
as an after-thought in Ladder Logic’s design than a first-class feature.

When designing new languages for end-users, it might be chal-
lenging to find ways to reuse code that work for them. For example,
while the popular block-based language Scratch supports user-defined
procedure blocks, only a small percentage of programs use the fea-
ture [92]. Instead, many end-user programmers rely on code clones
that are prone to causing the same visibility issues that are found in
Ladder Logic [93]. It is not well-understood why end-users rarely use
procedures in Scratch. One reason might be that they are not aware
of the feature since many tutorials don’t cover it sufficiently. Another
explanation could be that the feature requires too much up-front effort
to use while its benefits only play out over time. It remains a challenge
for designers to find ways to encourage end-users to reuse code in their
language.

Q

Designers may need to consider encapsulation and
code reuse early on and advertise them prominently
in their end-user languages. Otherwise, they might
risk that users miss these features or do not see their
benefits.

6.4. Implicit dependencies

Our survey results show that even small Ladder Logic programs can
be difficult to read or write. Participants stated that they find it difficult
to understand programs where the output of one rung is used as an
input in others. They described that they frequently miss the implicit
dependency between such rungs when reading programs. They further
explained that they find it hard to write programs with this type of
dependencies since they do not have a good intuition for the resulting
behavior.

Unfortunately, the design of Ladder Logic makes it hard to avoid
dependencies between rungs. In particular, re-using any intermediate

11

Journal of Computer Languages 69 (2022) 101087

results in Ladder Logic requires users to connect them to an output and
use it as an input in another rung or, worse yet, store values in registers.
Unlike variables in traditional programming languages, registers are
always accessible globally and can be read and written at any point.
Therefore, when a user modifies one rung of a program, any other part
of the program might be potentially affected. Since Ladder Logic rungs
are continuously evaluated, cycling through the program hundreds of
times per second, changes to registers (i.e., global variables) can even
affect previous rungs, or introduce unintended dependency cycles.

Programming environments can help users visualize and understand
dependencies. As previously discussed, solutions to make Ladder Logic
more scalable, like highlighting rungs with the same elements, can also
help to make dependencies explicit. Marking cyclic dependencies and
automated refactoring of rungs into dependency order may make pro-
grams easier to read. However, programming environments can only
fight the symptoms of underlying language design issues: Ladder Logic
has very limited support for scoping or modularity. As we know from
the study of other languages, these features are essential to program
usability, and an end-user language should actively encourage the use
of scoping and modularity. Designers of new languages that model
dependencies or data flow need to incorporate features that support
end-users in structuring their programs.

Q

Development environments can visualize implicit de-
pendencies, but this aid has limitations. Languages
can therefore support industrial end-users by making
dependencies explicit and allowing them to manually
structure their programs.

7. Threats to validity

As with most survey-based investigations, a primary threat to exter-
nal validity is the appropriateness of the surveyed population. Our hy-
pothesis was that Ladder Logic programming should be understandable
to any engineering employee in an engineering company. To minimize
this threat, we emailed surveys only to those with engineering-based
jobs (according to their official job titles) in a multi-national engineer-
ing conglomerate. As shown in Fig. 7, all self-reported job titles were
explicitly engineering or another technical role.

Another threat to external validity is an ecological threat: can the
results of studying this single industrial end-user language generalize to
other industrial end-user languages. Ladder Logic shares many charac-
teristics with other industrial end-user languages such as LabView and
other IEC 61131-3 languages. It is a visual language, it was designed
to be easy-to-learn and easy-to-use by non-programmers, it was not
designed or studied by programming language experts, and it is in
widespread industrial use. Because of these parallels, many findings are
likely to generalize to other languages; however, Ladder Logic-specific
issues, such as its notation being familiar only to electrical engineers,
will not.

A threat to internal validity centers around the quality of our
training. If our training video was unclear or confusing, it could hinder
our participants ability to answer Ladder Logic questions. We mitigated
this threat by focusing only on the most basic concepts in Ladder Logic
in the training video and subsequent survey, in addition to piloting
and improving our survey and training prior to deployment. Data from
our experiment suggests that our training was effective. As we can see
from Fig. 9, those with prior knowledge of Ladder Logic (top row on
top group) performed only slightly better (analysis in Section 5.2) than
those with no prior knowledge of Ladder Logic (all other rows in top
group), including those with no experience with PLCs.

One more threat to internal validity was found in the reliability of
the questionnaire applied in this study. Using the Cronbach’s Alpha test
in our set of answers for the SUS questionnaire, we detected that the

F. Fronchetti, N. Ritschel, R. Holmes et al.

alpha value found was slightly low (alpha = 0.327), suggesting some
potential bias in our results. Since the SUS questionnaire is based on a
set of standard usability questions that are widely used by many other
studies with great Cronbach’s Alpha scores [89], we decided to keep
such results as part of our study.

Fortunately, there are no large threats to the construct validity of
this experiment. Our primary results measure the performance of tech-
nical employees on reading and understanding Ladder Logic diagrams,
which matches exactly the construct we intended to measure. The use
of multiple choice answers could introduce a minor threat, as it is
difficult to differentiate between respondents that answered randomly
(and thus mainly incorrectly) and those that were answering authenti-
cally, but simply performing poorly. Fortunately, almost all respondents
answered three or more questions correctly, which indicates that they
did not select answers arbitrarily. Another threat is that users could
accidentally choose wrong answers (i.e., a mis-click). This threat was
minimized by allowing respondents to revisit questions and update
their responses.

Finally, there is a possible threat to our conclusion validity. One
of our major conclusions posits that most respondents fail our test,
answering at least one of ten simple questions incorrectly. It is possible
that this standard is too high, that engineers are likely to make a
mistake on one of ten questions on a survey, even if they known and
understand the material. We reject this threat, as engineers tend to
be meticulous in their work and in their responses. Furthermore, if
engineers make one mistake for every ten Ladder Logic programs they
read, then programming a realistic-sized system would be impossible.
Thus, we dismiss this threat.

8. Conclusion

In our study, we evaluated the Ladder Logic programming language
by surveying industrial engineers. We found that although popular
among users of Programmable Logic Controllers, Ladder Logic rep-
resents the essence of what is available in industrial end-user pro-
gramming: a set of outdated and counter-intuitive visual programming
languages that have become popular due to a lack of alternatives rather
than their high quality. In this paper we showed that nearly 70% of end-
user industrial engineers who answered our survey made substantive
errors when trying to solve simple automation problems using Ladder
Logic, even if they had significant prior experience with that language.
Among the difficulties observed, we noticed that certain aspects of
Ladder Logic are more challenging than others for most users, such as
the concept of negation.

We also investigated the usability of Ladder Logic via a system
usability questionnaire, where we found that Ladder Logic receives
a “Fair” rating from users. Last but not least, we also asked our
respondents to openly discuss their concerns about Ladder Logic. The
respondents pointed out key limitations of Ladder Logic, including
difficulties in scalability, dependency management, and modularity,
summarizing Ladder Logic as a language that should be used only for
educational purposes.

Based on our findings and feedback from industrial end-user engi-
neers, we identified four design observations for future language and
tool designers to consider when creating languages for industrial end-
users. We hope these observations can help improve the correctness
of industrial end-user programs which could ultimately improve their
productivity in this increasingly important domain.

We see our findings as supplementing existing evidence of the short-
comings of industrial end-user languages. Adding to the pioneering
work analyzing LabVIEW [19,20], another widely popular industrial
end-user language, our work shows that another major language is
failing its users. In General Electric’s advertising campaign, “What’s
the Matter with Owen?”, the protagonist, a young computer scientist,
is faced with convincing his friends that working for an industrial
company, one that produces our power, creates physical products, and

Journal of Computer Languages 69 (2022) 101087

treats our water, is just as important as working for a FAANG com-
pany [94]. Unfortunately, his friend, who works for Zazzies, the mobile
app which allows users to put hats made of fruit on cute animals, steals
the show from Owen, and receives all the attention from their peers.*
Our work is driven by this fear, that software engineering research
overlooks industrial end-users, focusing on more traditional software
development teams and tools. We hope that this work demonstrates
that industrial end-users face real problems, but that solutions can be
found, and drives more research interest towards this important field.

CRediT authorship contribution statement

Felipe Fronchetti: Conceptualization, Methodology, Investigation,
Data curation, Formal analysis, Validation, Writing — original draft,
Writing — review & editing, Supervision. Nico Ritschel: Conceptualiza-
tion, Methodology, Investigation, Formal analysis, Validation, Writing —
original draft, Writing — review & editing. Reid Holmes: Conceptualiza-
tion, Methodology, Investigation, Formal analysis, Validation, Writing
- original draft, Writing — review & editing. Linxi Li: Data curation,
Formal analysis, Validation, Writing — review & editing. Mauricio Soto:
Project administration, Funding acquisition. Raoul Jetley: Project ad-
ministration, Funding acquisition. Igor Wiese: Data curation, Formal
analysis, Validation, Writing — review & editing. David Shepherd:
Conceptualization, Methodology, Investigation, Formal analysis, Vali-
dation, Writing — original draft, Writing — review & editing, Project
administration, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This study is supported by the National Science Foundation, USA
under Grant NRI-2024561.

References

[1] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, Susan Wiedenbeck, The
state of the art in end-user software engineering, ACM Comput. Surv. 43
(3) (2019) http://dx.doi.org/10.1145/1922649.1922658, URL https://doi.org/
10.1145/1922649.1922658.

[2] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, Alfonso Pierantonio,
Supporting the understanding and comparison of low-code development plat-
forms, in: Proceedings of the Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), 2019, pp. 171-178.

[3] Felicien Thirwe, Davide Di Ruscio, Silvia Mazzini, Pierluigi Pierini, Alfonso
Pierantonio, Low-code engineering for internet of things: A state of research, in:
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, 2019, pp. 1-8.

[4] Raquel Sanchis, Oscar Garcia-Perales, Francisco Fraile, Raul Poler, Low-code as
enabler of digital transformation in manufacturing industry, Appl. Sci. 10 (1)
(2019) 12.

[5] John R Rymer, Rob Koplowitz, Salesforce Are Leaders, Kony Mendix, Salesforce
are Leaders, GeneXus ServiceNow, Strong Performers, WaveMaker MatsSoft,
Thinkwise are Contenders, The Forrester Wave™: Low-Code Development
Platforms For AD&D Professionals, Q1 2019, Forrester Research, 2019.

[6] Caitlin Kelleher, Randy Pausch, Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice programmers,
ACM Comput. Surv. 37 (2) (2019) 83-137.

[7] Christopher Scaffidi, Andrew Dove, Tahmid Nabi, LondonTube: Overcoming
hidden dependencies in cloud-mobile-web programming, in: Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, 2019, pp.
3498-3508.

4 An exemplar commercial from this campaign: https://www.youtube.com/
watch?v=SW_7Q_tAk9l.

http://dx.doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/1922649.1922658
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb2
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb2
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb2
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb2
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb2
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb2
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb2
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb3
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb3
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb3
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb3
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb3
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb3
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb3
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb4
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb4
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb4
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb4
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb4
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb5
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb5
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb5
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb5
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb5
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb5
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb5
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb6
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb6
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb6
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb6
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb6
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb7
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb7
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb7
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb7
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb7
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb7
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb7
https://www.youtube.com/watch?v=SW_7Q_tAk9I
https://www.youtube.com/watch?v=SW_7Q_tAk9I

F. Fronchetti, N. Ritschel, R. Holmes et al.

[8]

[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Nan Zang, Mary Beth Rosson, Vincent Nasser, Mashups: who? what? why? in:
CHI’08 Extended Abstracts on Human Factors in Computing Systems, 2019, pp.
3171-3176.

Sean McDirmid, Living it up with a live programming language, ACM SIGPLAN
Not. 42 (10) (2019) 623-638.

Chris Proctor, Paulo Blikstein, Grounding how we teach programming in why
we teach programming, in: Constructionism in Action, 2019, pp. 127-134.
David Weintrop, Uri Wilensky, Comparing block-based and text-based program-
ming in high school computer science classrooms, Trans. Comput. Educ. (TOCE)
18 (1) (2019) 1-25.

P Vincent, K Lijima, Mark Driver, Jason Wong, Yefim Natis, Magic quadrant
for enterprise low-code application platforms, Retrieved December, 18, 2019, p.
2019.

Simon Peyton Jones, Alan Blackwell, Margaret Burnett, A user-centred approach
to functions in excel, in: Proceedings of the International Conference on
Functional Programming (ICFP), 2019, pp. 165-176.

Robin Abraham, Martin Erwig, Steve Kollmansberger, Ethan Seifert, Visual
specifications of correct spreadsheets, in: In Proceedings of the Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2019, pp. 189-196.
Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, Antonio Piccinno, End-
user development, end-user programming and end-user software engineering: A
systematic mapping study, J. Syst. Softw. 149 (2019) 101-137, http://dx.doi.
0rg/10.1016/j.j55.2018.11.041.

Michael Tiegelkamp, Karl-Heinz John, IEC 61131-3: Programming Industrial
Automation Systems, Springer, 2019.

Jeffrey Travis, LabVIEW for Everyone, Pearson Education, 2019.

Steven T Karris, Introduction to Simulink with Engineering Applications, Orchard
Publications, 2019.

Christopher Chambers, Christopher Scaffidi, Utility and accuracy of smell-driven
performance analysis for end-user programmers, J. Vis. Lang. Comput. 26 (2019)
1-14.

Christopher Chambers, Christopher Scaffidi, Impact and utility of smell-driven
performance tuning for end-user programmers, J. Vis. Lang. Comput. 28 (2019)
176-194.

c3controls, PLC programming then & now: the history of PLCs, 2019, URL https:
//www.c3controls.com/white-paper/history-of- programmable-logic-controllers/.
Michael Tiegelkamp, Karl-Heinz John, IEC 61131-3: Programming Industrial
Automation Systems, Vol. 14, Springer, 2019.

Edouard Tisserant, Laurent Bessard, Mario de Sousa, An open source IEC 61131-
3 integrated development environment, in: Proceedings of the International
Conference on Industrial Informatics, 1, 2019, pp. 183-187.

Daniel D Hils, Visual languages and computing survey: Data flow visual
programming languages, J. Vis. Lang. Comput. 3 (1) (2019) 69-101.

Bryan J Smith, Conceptual graphs as a visual programming language for
teaching programming, in: Proceedings of the International Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2019, pp. 258-259.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, Evelyn Eastmond,
The scratch programming language and environment, ACM Trans. Comput. Educ.
(TOCE) 10 (4) (2019) 1-15.

Clifford J Peshek, Michael T Mellish, Recent developments and future trends
in PLC programming languages and programming tools for real-time control,
in: [1993] Record of Conference Papers Cement Industry Technical, 2019, pp.
219-230.

Satabdi Basu, Using rubrics integrating design and coding to assess middle
school students’ open-ended block-based programming projects, in: Proceedings
of the Technical Symposium on Computer Science Education (SIGCSE), 2019,
pp. 1211-1217.

David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, Franklyn Turbak, Learnable
programming: Blocks and beyond, Commun. ACM (CACM) 60 (6) (2019) 72-80.
Juliane Fischer, Birgit Vogel-Heuser, Heiko Schneider, Nikolai Langer, Markus
Felger, Matthias Bengel, Measuring the overall complexity of graphical and
textual IEC 61131-3 control software, IEEE Robot. Autom. Lett. (2019).
Herbert Prihofer, Florian Angerer, Rudolf Ramler, Friedrich Grillenberger, Static
code analysis of IEC 61131-3 programs: Comprehensive tool support and experi-
ences from large-scale industrial application, IEEE Trans. Ind. Inf. 13 (1) (2019)
37-47.

Mitchel Resnick, John Maloney, Andrés Monroy-Herndndez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al., Scratch: Programming for all, Commun. ACM (CACM) 52 (11)
(2019) 60-67.

Mordor Intelligence, Programmable logic controller (PLC) market - growth,
trends, COVID-19 impact, and forecasts (2021 - 2026), 2019, URL
https://www.reportlinker.com/p06062818/Programmable-Logic- Controller-
PLC-Market-Growth-Trends-COVID-19-Impact-and-Forecasts.html.

Jeremy R Pollard, Ladder logic remains the PLC language of choice, Control Eng.
41 (5) (2019) 77-79.

Nick Diakopoulous, Mythili Bagavandas, Gurdeep Singh, Preeti Kulkarni, Inter-
active: The top programming languages, 2019, URL https://spectrum.ieee.org/
static/interactive- the-top- programming-languages-2020.

C. Edvard, 4 most popular PLC programming languages for implementation of
control diagrams, Electr. Eng. Portal (2019).

13

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Journal of Computer Languages 69 (2022) 101087

T.R. Alves, M. Buratto, F.M. de Souza, T.V. Rodrigues, OpenPLC: an open
source alternative to automation, in: Proceedings of the Global Humanitarian
Technology Conference (GHTC), 2019, pp. 585-589.

Kevin Brock, The ‘FizzBuzz’' programming test: A case-based exploration of
rhetorical style in code, Comput. Cult. (5) (2019).

Rainer Bischoff, Arif Kazi, Markus Seyfarth, The MORPHA style guide for icon-
based programming, in: Proceedings. 11th IEEE International Workshop on Robot
and Human Interactive Communication, IEEE, 2019, pp. 482-487.

Martin Markovi¢, Uporaba Robotskega in Operativnega Sistema Za Programiranje
Kolaborativnega Robota Franka Emika (Ph.D. thesis), Univerza v Ljubljani,
Fakulteta za strojniStvo, 2019.

Gregory F Rossano, Carlos Martinez, Mikael Hedelind, Steve Murphy, Thomas A
Fuhlbrigge, Easy robot programming concepts: An industrial perspective, in: 2013
IEEE International Conference on Automation Science and Engineering, CASE,
IEEE, 2019, pp. 1119-1126.

Frank Lamb, Automation and manufacturing, Industrial Automation: Hands on,
McGraw-Hill Education LLC, New York, N.Y, 2019.

James F. Lea, Rowlan Lynn Jr., Programmable logic controllers, chapter
14.3.4.2, Gas Well Deliquification, third ed., Elsevier, 2019, URL
https://app.knovel.com/hotlink/khtml/id:kt01226C76/gas-well-deliquification/
programmable-logic-controllers.

Jon L. Dossett, George E. Totten, Advantages of task-specific controllers, chapter
9.4.1.1, ASM Handbook, Volume 04B - Steel Heat Treating Technologies, ASM In-
ternational, 2019, URL https://app.knovel.com/hotlink/khtml/id:kt00U4HOM2/
asm-handbook-volume-4b/advantages-task-specific.

K.K. Appuu Kuttan, Programmable logic controller, chapter 5.8, in: Introduction
to Mechatronics, Oxford University Press, 2019, URL https://app.knovel.com/
hotlink/khtml/id:kt008VP3P2/introduction-mechatronics/programmable-logic-
controller.

K.T. Erickson, Programmable logic controllers, IEEE Potentials 15 (1) (2019)
14-17, http://dx.doi.org/10.1109/45.481370.

Edward H. Smith, Ladder logic programming, chapter 3.8.3, in: Mechanical
Engineer’s Reference Book, twelfth ed., 2019, URL https://app.knovel.com/
hotlink/khtml/id:kt002YJTS1/mechanical-engineers/ladder-logic- programming.
AK. Gupta, S.K. Arora, Jean Riescher Westcott, The input/output module,
chapter 11.14.1.1, Industrial Automation and Robotics, Mercury Learning
and Information, 2017, https://app.knovel.com/hotlink/khtml/id:kt0119K1R1/
industrial-automation/input- output-module.

C.L. Albert, D.A. Coggan, Boolean logic, chatper 9.9.4, Fundamentals of Industrial
Control, second ed., ISA, 2019, URL https://app.knovel.com/hotlink/khtml/id:
ktOOBHDAK1/fundamentals-industrial/boolean-logic.

D. Koshal, Ladder logic programming, chapter 11.7.3, Manufacturing Engineer’s
Reference Book, Elsevier, 2019, URL https://app.knovel.com/hotlink/khtml/id:
kt002UQ207/manufacturing-engineers/ladder-logic- programming.

Kelvin T Erickson, Programmable Logic Controllers: an Emphasis on Design and
Application, Dogwood Valley Press, 2019.

Austin Scott, Ladder logic overview, chapter 5.1, in: Learning RSLogix 5000
Programming, Packt Publishing, 2019, URL https://app.knovel.com/hotlink/
khtml/id:kt011DLXT2/learning-rslogix-5000/ladder-logic-overview.

Nicholas P. Sands, Ian Verhappen, Ladder logic, chapter 4.2, Guide to the
Automation Body of Knowledge, third ed., ISA, 2019, URL https://app.knovel.
com/hotlink/khtml/id:kt011NZ7V8/guide-automation-body/ladder-logic.

S. Bobby Rauf, Relay ladder logic, chapter 10.12, Electrical Engineering
for Non-Electrical Engineers, second ed., Fairmont Press Inc. 2019,
URL https://app.knovel.com/hotlink/khtml/id:kt0113HO8V/electrical-
engineering/relay-ladder-logic.

Philip D. Rufe, Programming, chapter 43.4, Fundamentals of Manufacturing,
third ed., Society of Manufacturing Engineers (SME), 2019, URL
https://app.knovel.com/hotlink/khtml/id:ktOOBKEXP2/fundamentals-
manufacturing/programming.

Thomas A. Hughes, Measurement and control basics (4th edition), chapter
11.6: International standard for PLC languages, in: Measurement and Control
Basics, fourth ed., ISA, 2019, URL https://app.knovel.com/hotlink/khtml/id:
ktOOC8NPD2/measurement-control-basics/international-standard.

Nicholas P. Sands, Ian Verhappen, Guide to the automation body of knowledge
(3rd edition), chapter 16.7: The languages, Guide to the Automation Body of
Knowledge, third ed., ISA, 2019, URL https://app.knovel.com/hotlink/khtml/id:
kt011NZFE3/guide-automation-body/the-languages.

Haralambos Mouratidis, Software engineering for secure systems: Industrial
and research perspectives, chapter 12.2.2: PLC and IEC 61131-3, Soft-
ware Engineering for Secure Systems: Industrial and Research Perspectives,
IGI Global, 2019, URL https://app.knovel.com/hotlink/khtml/id:kt00U7UO21/
software-engineering/plc-and-iec-61131-3.

Alexander Aiken, Manuel Fihndrich, Zhendong Su, Detecting races in relay
ladder logic programs, in: Proceedins of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, 2019, pp. 184-200.
Naman Govil, Anand Agrawal, Nils Ole Tippenhauer, On ladder logic bombs in
industrial control systems, in: Computer Security, Springer, 2019, pp. 110-126.
Albert Falcione, Bruce H Krogh, Design recovery for relay ladder logic, IEEE
Control Syst. Mag. 13 (2) (2019) 90-98.

http://refhub.elsevier.com/S2590-1184(21)00063-0/sb8
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb8
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb8
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb8
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb8
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb9
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb9
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb9
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb10
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb10
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb10
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb11
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb11
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb11
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb11
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb11
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb13
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb13
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb13
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb13
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb13
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb14
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb14
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb14
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb14
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb14
http://dx.doi.org/10.1016/j.jss.2018.11.041
http://dx.doi.org/10.1016/j.jss.2018.11.041
http://dx.doi.org/10.1016/j.jss.2018.11.041
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb16
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb16
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb16
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb17
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb18
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb18
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb18
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb19
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb19
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb19
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb19
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb19
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb20
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb20
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb20
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb20
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb20
https://www.c3controls.com/white-paper/history-of-programmable-logic-controllers/
https://www.c3controls.com/white-paper/history-of-programmable-logic-controllers/
https://www.c3controls.com/white-paper/history-of-programmable-logic-controllers/
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb22
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb22
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb22
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb23
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb23
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb23
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb23
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb23
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb24
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb24
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb24
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb25
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb25
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb25
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb25
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb25
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb26
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb26
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb26
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb26
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb26
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb27
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb27
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb27
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb27
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb27
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb27
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb27
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb28
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb28
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb28
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb28
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb28
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb28
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb28
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb29
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb29
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb29
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb30
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb30
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb30
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb30
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb30
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb31
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb31
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb31
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb31
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb31
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb31
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb31
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb32
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb32
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb32
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb32
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb32
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb32
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb32
https://www.reportlinker.com/p06062818/Programmable-Logic-Controller-PLC-Market-Growth-Trends-COVID-19-Impact-and-Forecasts.html
https://www.reportlinker.com/p06062818/Programmable-Logic-Controller-PLC-Market-Growth-Trends-COVID-19-Impact-and-Forecasts.html
https://www.reportlinker.com/p06062818/Programmable-Logic-Controller-PLC-Market-Growth-Trends-COVID-19-Impact-and-Forecasts.html
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb34
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb34
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb34
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb36
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb36
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb36
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb37
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb37
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb37
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb37
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb37
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb38
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb38
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb38
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb39
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb39
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb39
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb39
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb39
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb40
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb40
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb40
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb40
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb40
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb41
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb41
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb41
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb41
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb41
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb41
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb41
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb42
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb42
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb42
https://app.knovel.com/hotlink/khtml/id:kt01226C76/gas-well-deliquification/programmable-logic-controllers
https://app.knovel.com/hotlink/khtml/id:kt01226C76/gas-well-deliquification/programmable-logic-controllers
https://app.knovel.com/hotlink/khtml/id:kt01226C76/gas-well-deliquification/programmable-logic-controllers
https://app.knovel.com/hotlink/khtml/id:kt00U4H0M2/asm-handbook-volume-4b/advantages-task-specific
https://app.knovel.com/hotlink/khtml/id:kt00U4H0M2/asm-handbook-volume-4b/advantages-task-specific
https://app.knovel.com/hotlink/khtml/id:kt00U4H0M2/asm-handbook-volume-4b/advantages-task-specific
https://app.knovel.com/hotlink/khtml/id:kt008VP3P2/introduction-mechatronics/programmable-logic-controller
https://app.knovel.com/hotlink/khtml/id:kt008VP3P2/introduction-mechatronics/programmable-logic-controller
https://app.knovel.com/hotlink/khtml/id:kt008VP3P2/introduction-mechatronics/programmable-logic-controller
https://app.knovel.com/hotlink/khtml/id:kt008VP3P2/introduction-mechatronics/programmable-logic-controller
https://app.knovel.com/hotlink/khtml/id:kt008VP3P2/introduction-mechatronics/programmable-logic-controller
http://dx.doi.org/10.1109/45.481370
https://app.knovel.com/hotlink/khtml/id:kt002YJTS1/mechanical-engineers/ladder-logic-programming
https://app.knovel.com/hotlink/khtml/id:kt002YJTS1/mechanical-engineers/ladder-logic-programming
https://app.knovel.com/hotlink/khtml/id:kt002YJTS1/mechanical-engineers/ladder-logic-programming
https://app.knovel.com/hotlink/khtml/id:kt0119K1R1/industrial-automation/input-output-module
https://app.knovel.com/hotlink/khtml/id:kt0119K1R1/industrial-automation/input-output-module
https://app.knovel.com/hotlink/khtml/id:kt0119K1R1/industrial-automation/input-output-module
https://app.knovel.com/hotlink/khtml/id:kt00BHDAK1/fundamentals-industrial/boolean-logic
https://app.knovel.com/hotlink/khtml/id:kt00BHDAK1/fundamentals-industrial/boolean-logic
https://app.knovel.com/hotlink/khtml/id:kt00BHDAK1/fundamentals-industrial/boolean-logic
https://app.knovel.com/hotlink/khtml/id:kt002UQ2O7/manufacturing-engineers/ladder-logic-programming
https://app.knovel.com/hotlink/khtml/id:kt002UQ2O7/manufacturing-engineers/ladder-logic-programming
https://app.knovel.com/hotlink/khtml/id:kt002UQ2O7/manufacturing-engineers/ladder-logic-programming
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb51
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb51
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb51
https://app.knovel.com/hotlink/khtml/id:kt011DLXT2/learning-rslogix-5000/ladder-logic-overview
https://app.knovel.com/hotlink/khtml/id:kt011DLXT2/learning-rslogix-5000/ladder-logic-overview
https://app.knovel.com/hotlink/khtml/id:kt011DLXT2/learning-rslogix-5000/ladder-logic-overview
https://app.knovel.com/hotlink/khtml/id:kt011NZ7V8/guide-automation-body/ladder-logic
https://app.knovel.com/hotlink/khtml/id:kt011NZ7V8/guide-automation-body/ladder-logic
https://app.knovel.com/hotlink/khtml/id:kt011NZ7V8/guide-automation-body/ladder-logic
https://app.knovel.com/hotlink/khtml/id:kt0113HO8V/electrical-engineering/relay-ladder-logic
https://app.knovel.com/hotlink/khtml/id:kt0113HO8V/electrical-engineering/relay-ladder-logic
https://app.knovel.com/hotlink/khtml/id:kt0113HO8V/electrical-engineering/relay-ladder-logic
https://app.knovel.com/hotlink/khtml/id:kt00BKEXP2/fundamentals-manufacturing/programming
https://app.knovel.com/hotlink/khtml/id:kt00BKEXP2/fundamentals-manufacturing/programming
https://app.knovel.com/hotlink/khtml/id:kt00BKEXP2/fundamentals-manufacturing/programming
https://app.knovel.com/hotlink/khtml/id:kt00C8NPD2/measurement-control-basics/international-standard
https://app.knovel.com/hotlink/khtml/id:kt00C8NPD2/measurement-control-basics/international-standard
https://app.knovel.com/hotlink/khtml/id:kt00C8NPD2/measurement-control-basics/international-standard
https://app.knovel.com/hotlink/khtml/id:kt011NZFE3/guide-automation-body/the-languages
https://app.knovel.com/hotlink/khtml/id:kt011NZFE3/guide-automation-body/the-languages
https://app.knovel.com/hotlink/khtml/id:kt011NZFE3/guide-automation-body/the-languages
https://app.knovel.com/hotlink/khtml/id:kt00U7UO21/software-engineering/plc-and-iec-61131-3
https://app.knovel.com/hotlink/khtml/id:kt00U7UO21/software-engineering/plc-and-iec-61131-3
https://app.knovel.com/hotlink/khtml/id:kt00U7UO21/software-engineering/plc-and-iec-61131-3
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb59
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb59
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb59
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb59
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb59
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb60
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb60
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb60
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb61
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb61
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb61

F. Fronchetti, N. Ritschel, R. Holmes et al.

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Kurapati Venkatesh, MengChu Zhou, Reggie J Caudill, Comparing ladder logic
diagrams and Petri nets for sequence controller design through a discrete
manufacturing system, IEEE Trans. Ind. Electron. 41 (6) (2019) 611-619.
Stephen Cooper, Wanda Dann, Randy Pausch, Alice: A 3-D tool for introductory
programming concepts, J. Comput. Sci. Coll. 15 (5) (2019) 107-116.

Markus Ketterl, Beate Jost, Thorsten Leimbach, Reinhard Budde, Tema 2: Open
roberta - a web based approach to visually programming real educational robots,
in: Tidsskriftet LeRing Og Medier (LOM), Vol. 8, No. 14, 2019.

Amon Millner, Edward Baafi, Modkit: Blending and extending approachable
platforms for creating computer programs and interactive objects, in: Proceedings
of the International Conference on Interaction Design and Children, 2019, pp.
250-253.

Adin Baskoro Pratomo, Riza Satria Perdana, Arduviz, a visual programming IDE
for arduino, in: Proceedings of the International Conference on Data and Software
Engineering (ICoDSE), 2019, pp. 1-6.

Diana Franklin, Gabriela Skifstad, Reiny Rolock, Isha Mehrotra, Valerie Ding,
Alexandria Hansen, David Weintrop, Danielle Harlow, Using upper-elementary
student performance to understand conceptual sequencing in a blocks-based
curriculum, in: Proceedings of the Technical Symposium on Computer Science
Education (SIGCSE), 2019, pp. 231-236.

Shuchi Grover, Satabdi Basu, Measuring student learning in introductory block-
based programming: Examining misconceptions of loops, variables, and boolean
logic, in: Proceedings of the Technical Symposium on Computer Science
Education (SIGCSE), 2019, pp. 267-272.

Thomas W Price, Tiffany Barnes, Comparing textual and block interfaces
in a novice programming environment, in: Proceedings of the International
Computing Education Research Conference (ICER), 2019, pp. 91-99.

Zhen Xu, Albert D Ritzhaupt, Fengchun Tian, Karthikeyan Umapathy, Block-
based versus text-based programming environments on novice student learning
outcomes: A meta-analysis study, Comput. Sci. Educ. 29 (2-3) (2019) 177-204.
Tracey Booth, Simone Stumpf, End-user experiences of visual and textual
programming environments for arduino, in: International Symposium on End
User Development (IS-EUD), 2019, pp. 25-39.

José Maria Rodriguez Corral, Ivdn Ruiz-Rube, Ant6n Civit Balcells, José Miguel
Mota-Macias, Arturo Morgado-Estévez, Juan Manuel Dodero, A study on the
suitability of visual languages for non-expert robot programmers, IEEE Access
7 (2019) 17535-17550.

Thomas RG Green, Marian Petre, Rachel KE Bellamy, Comprehensibility
of visual and textual programs: A test of superlativism against the’match-
mismatch’conjecture, in: Empirical Studies of Programmers: Fourth Workshop,
Vol. 121146, Ablex Publishing, Norwood, NJ, 2019.

Thomas R.G. Green, Marian Petre, Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework, J. Vis. Lang. Comput. 7 (2)
(2019) 131-174.

Enrique Coronado, Fulvio Mastrogiovanni, Bipin Indurkhya, Gentiane Venture,
Visual programming environments for end-user development of intelligent and
social robots, a systematic review, J. Comput. Lang. 58 (2019) 100970.
Mohammad Amin Kuhail, Shahbano Farooq, Rawad Hammad, Mohammed
Bahja, Characterizing visual programming approaches for end-user developers:
A systematic review, IEEE Access (2019).

Nayeon Bak, Byeong-Mo Chang, Kwanghoon Choi, Smart block: A visual block
language and its programming environment for IoT, J. Comput. Lang. 60 (2019)
100999.

14

[78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Journal of Computer Languages 69 (2022) 101087

John Brooke, SUS: A retrospective, J. Usability Stud. 8 (2) (2019) 29-40.

Rex Hartson, Pardha S. Pyla, The system usability scale (SUS), chapter 12.5.3.3,
in: UX Book - Process and Guidelines for Ensuring a Quality User Experience,
Elsevier, 2019, URL https://app.knovel.com/hotlink/khtml/id:ktO0BP2G59/ux-
book- process-guidelines/system-usability-scale.

Don A Dillman, Mail and Internet Surveys: the Tailored Design Method-2007
Update with New Internet, Visual, and Mixed-Mode Guide, John Wiley & Sons,
2019.

James R Lewis, Jeff Sauro, The factor structure of the system usability scale, in:
Proceedings of the International Conference on Human Centered Design, 2019,
pp. 94-103.

Donna Spencer, Card Sorting: Designing Usable Categories, Rosenfeld Media,
2019.

Anselm L. Strauss, Juliet M. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory, Sage Pub, Thousand Oaks,
2019.

Daniel S Wilks, Statistical Methods in the Atmospheric Sciences, Vol. 100,
Academic Press, 2019.

Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, Appropri-
ate statistics for ordinal level data: Should we really be using t-test and cohen’s d
for evaluating group differences on the NSSE and other surveys, in: Proceedings
of the Annual Meeting of the Florida Association of Institutional Research, 2019,
pp. 1-33.

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson,
Joyce Malyn-Smith, Linda Werner, Computational thinking for youth in practice,
ACM Inroads 2 (1) (2019) 32-37.

John F Pane, Brad A Myers, Tabular and textual methods for selecting objects
from a group, in: Proceeding 2000 IEEE International Symposium on Visual
Languages, IEEE, 2019, pp. 157-164.

Aaron Bangor, Philip Kortum, James Miller, Determining what individual SUS
scores mean: Adding an adjective rating scale, J. Usability Stud. 4 (3) (2019)
114-123.

Aaron Bangor, Philip T Kortum, James T Miller, An empirical evaluation
of the system usability scale, Int. J. Hum. Comput. Interact. 24 (6) (2019)
574-594.

Nico Ritschel, Vladimir Kovalenko, Reid Holmes, Ronald Garcia, David C.
Shepherd, Comparing block-based programming models for two-armed robots,
IEEE Trans. Softw. Eng. (TSE) (2019) 1, http://dx.doi.org/10.1109/TSE.2020.
3027255.

Neal Babcock, PLC programming with RSLogix 5000, in: Modern Media, Toronto,
Canada, 2019.

Alaaeddin Swidan, Alexander Serebrenik, Felienne Hermans, How do scratch
programmers name variables and procedures? in: Proceedings of the International
Working Conference on Source Code Analysis and Manipulation (SCAM), 2019,
pp. 51-60.

Gregorio Robles, Jestis Moreno-Le6n, Efthimia Aivaloglou, Felienne Hermans,
Software clones in scratch projects: On the presence of copy-and-paste in
computational thinking learning, in: Proceedings of the International Workshop
on Software Clones (IWSC), 2019, pp. 1-7.

Rob Salkowitz, The Alarming Economic Trend Behind Ge’s Odd Ad Campaign,
Forbes, 2019.

http://refhub.elsevier.com/S2590-1184(21)00063-0/sb62
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb62
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb62
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb62
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb62
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb63
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb63
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb63
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb64
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb64
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb64
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb64
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb64
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb65
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb65
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb65
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb65
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb65
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb65
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb65
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb66
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb66
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb66
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb66
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb66
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb67
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb67
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb67
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb67
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb67
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb67
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb67
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb67
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb67
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb68
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb68
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb68
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb68
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb68
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb68
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb68
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb69
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb69
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb69
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb69
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb69
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb70
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb70
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb70
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb70
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb70
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb71
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb71
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb71
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb71
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb71
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb72
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb72
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb72
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb72
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb72
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb72
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb72
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb73
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb73
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb73
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb73
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb73
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb73
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb73
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb74
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb74
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb74
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb74
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb74
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb75
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb75
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb75
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb75
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb75
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb76
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb76
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb76
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb76
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb76
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb77
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb77
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb77
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb77
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb77
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb78
https://app.knovel.com/hotlink/khtml/id:kt00BP2G59/ux-book-process-guidelines/system-usability-scale
https://app.knovel.com/hotlink/khtml/id:kt00BP2G59/ux-book-process-guidelines/system-usability-scale
https://app.knovel.com/hotlink/khtml/id:kt00BP2G59/ux-book-process-guidelines/system-usability-scale
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb80
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb80
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb80
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb80
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb80
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb81
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb81
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb81
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb81
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb81
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb82
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb82
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb82
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb83
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb83
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb83
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb83
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb83
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb84
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb84
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb84
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb85
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb85
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb85
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb85
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb85
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb85
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb85
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb85
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb85
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb86
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb86
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb86
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb86
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb86
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb87
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb87
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb87
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb87
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb87
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb88
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb88
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb88
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb88
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb88
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb89
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb89
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb89
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb89
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb89
http://dx.doi.org/10.1109/TSE.2020.3027255
http://dx.doi.org/10.1109/TSE.2020.3027255
http://dx.doi.org/10.1109/TSE.2020.3027255
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb91
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb91
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb91
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb92
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb92
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb92
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb92
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb92
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb92
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb92
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb93
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb93
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb93
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb93
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb93
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb93
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb93
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb94
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb94
http://refhub.elsevier.com/S2590-1184(21)00063-0/sb94

	Language impact on productivity for industrial end users: A case study from Programmable Logic Controllers
	Introduction
	Programming PLCs with ladder logic
	Related work
	PLCs
	Educational languages
	Visual languages in industry

	Research method
	Research questions
	Survey design
	Demographic questions
	Tutorial
	Exercises
	System usability scale
	Open-ended question

	Survey development
	Survey execution
	Data analysis
	Overall performance
	Performance per question
	Usability evaluation
	Analysis of open-ended responses

	Results
	Demographics
	RQ1: Can engineers solve automation sub-problems using ladder logic?
	RQ2: What characteristics of ladder logic problems are most challenging for engineers?
	RQ3: How easy-to-use and easy-to-learn did engineers rate ladder logic?
	RQ4: What insights did engineers have concerning the use of ladder logic for automation?

	Discussion
	Using domain-specific notation
	Scalability
	Encapsulation and code reuse
	Implicit dependencies

	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

