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A B S T R A C T   

Knowledge workers face many challenges in the workplace: work is fragmented, disruptions are constant, tasks 
are complex, and work hours can be long. These challenges can affect knowledge workers’ stress, focus and 
awakeness, and in turn their interaction with the digital environment, the quality of work performed and their 
productivity in general. We report on a field study with 14 knowledge workers over an eight-week period in 
which we investigated, using experience sampling, how the workers experience stress and awakeness over time. 
During this field study, we also collected biometric data including heart- and skin-related measures, which we 
then used to investigate if it is possible to predict stress, focus and awakeness, in the moment. We observed and 
report on various trends in knowledge worker stress and awakeness levels over several weeks, finding that people 
tend to have certain “baseline” levels for these aspects. Moreover, we found that days with high levels of stress 
tend to cluster, similarly as the days with low awakeness. We further show that machine learning models can be 
built from the data of a single minimally invasive device to predict stress, focus, and awakeness. Overall, we 
found that our models were capable of large improvements in precision and recall in comparison to a random 
classifier for stress (25.9% increase over random for precision, 4.2% for recall) and awakeness (52.4% increase in 
precision, 40.8% in recall). The abstract concept of focus proved to be the hardest to predict (26.0% increase in 
precision, 27.8% decrease in recall).   

1. Introduction 

‘The most valuable asset of a 21st-century institution (whether business or 
non-business) will be its knowledge workers and their productivity’ Drucker 
(1999). Knowledge workers constantly face challenges, such as a high 
work fragmentation, continuous disruptions and distractions, highly 
complex and demanding tasks, and long working hours Czerwinski et al. 
(2004); González and Mark (2004); Mark et al. (2008). These challenges, 
amongst others, can lead to stress in the workplace. Stress is an 
ever-growing concern as it can lead to fatigue, burnout and various other 
illnesses, ultimately resulting in work absences and marked productivity 
losses Hockey (1997); for the Improvement of Living and Conditions 

(2010); Setz et al. (2010). 
Given the importance of understanding stress and its relationship 

and effect on work, a number of studies have been conducted using a 
variety of methods. Minimally invasive studies have shown the benefit 
of sensing autonomic nervous system (ANS) activity by analyzing 
certain biometric (aka. psycho-physiological) signals of the human 
body, such as skin temperature Kataoka et al. (2000). These approaches 
can be used in long-term field studies, opening up the question of what 
stress looks like in the wild. In contrast, other studies have studied stress 
using more invasive techniques, such as measuring cortisol as a stress 
biomarker Piazza et al. (2010). These studies are best suited for labo-
ratory environments. 
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Our work builds on this ability to non-invasively monitor stress by 
performing an eight-week study in the workplace with 14 knowledge 
workers examining stress as well as two related human aspects: focus 
and awakeness (i.e., wakefulness). We collected data on these two 
additional aspects because stress and the challenges that contribute to 
stress levels can also affect sleep. A lack of sleep can affect the ability of 
knowledge workers to stay awake and focused at work which, in turn, 
can result in undesired consequences on work and productivity Cohen 
et al. (1997); Connor et al. (2002); Mark et al. (2014). 

In this paper, we investigate two research questions. Our first ques-
tion examines how knowledge workers experience stress and awakeness 
in their workplace over a long period of time. Our second question ex-
plores the possibility of using biometric data to predict whether a 
knowledge worker is experiencing stress, is focused, and is awake at a 
given moment in time. A better understanding of how knowledge 
workers experience stress, focus and awakeness can help inform the 
design of workplaces to manage and alleviate stress, and to encourage 
focus and awakeness. An ability to predict stress, focus and awakeness in 
the moment can enable the development of digital tools to support 
knowledge workers in their work by better managing disruptions, 
automatically adjusting lighting to reduce sleepiness, or by avoiding 
stress, amongst other possibilities. 

To the best of our knowledge, this is the longest in-situ study per-
formed in a real-world environment of knowledge workers analyzing an 
extensive collection of biometric signals with experience samples 
examining real-time prediction of stress, focus and awakeness in the 
workplace. Previous studies are predominantly controlled lab studies, 
which used only a subset of the relevant biometric signals we captured, 
much more limited in duration, or not focused on a real-world envi-
ronment Goyal and Fussell (2017); Healey and Picard (2005); Naka-
gawa et al. (2014); Parnin (2011); Radevski et al. (2015); Sano and 
Picard (2013); Wijsman et al. (2011); Züger and Fritz (2015). 

The participants in our study perform various job functions for a 
research and development group within a single large corporation. For 
this study, they wore a novel, state-of-the-art biometric armband 
comprised of precise sensors2 which captured heart-, respiration- and 
skin-related measures with low invasiveness. This modality was chosen 
to ease longitudinal deployment in the field. We then used machine 
learning to create classifiers and analyze their ability to predict stress, 
focus and awakeness levels based on the biometric signs gathered by the 
sensors. Considering all of these three human aspects helps us to 
consider whether one aspect might be easier to detect than another. If 
one aspect is easier to predict, it might serve as a proxy or an indicator of 
the presence (or absence) of other aspects. 

In our analysis, we identify several trends in day-to-day stress levels 
that emerged over the course of our eight-week study. The results of our 
analysis show that biometric signals collected from a single minimally 
invasive device can be used to predict stress and its related aspects 
accurately, with the abstract concept of focus (predictably) being the 
hardest to detect. Our results further determine that knowledge workers’ 
self-reported levels of stress, focus and awakeness, and their physio-
logical manifestation and prediction can vary substantially between 
individuals. The three main contributions of our work are:  

• A qualitative examination of how knowledge worker stress and 
awakeness behaves and fluctuates in the wild based on an eight-week 
field study with 14 office workers.  

• The creation and analysis of measures for the automatic monitoring 
of knowledge workers’ stress, focus and awakeness in the workplace 
based on a machine learning model trained on biometric data and 
experience samples.  

• A discussion on the impact of applying this research to improve the 
interaction of knowledge workers with their digital environment 

leading to an improvement in their productivity and well-being, 
besides a reflection on aspects that can be further improved in 
future studies. 

2. Related work 

The study and prediction approach used in this paper is related to 
previous studies of stress, focus, and awakeness and studies using bio-
metrics to predict them. We consider related work in each of these 
categories in turn. 

2.1. Stress 

Much previous work relates to identifying and mitigating stress in an 
office environment. Previous studies have measured stress by taking one 
of two possible approaches. The first approach is to measure plasma 
catecholamine and cortisol as stress biomarkers Piazza et al. (2010). 
This approach is impractical for use over prolonged periods of time, as in 
our eight-week study. Further, this approach is imprecise because of the 
delay from the stress stimulation to the stress response, which may take 
from minutes to hours Chandola et al. (2010); Hellhammer et al. (2009). 

The second approach, which we have chosen for our study, is to 
measure autonomic nervous system (ANS) activity by analyzing bio-
metric signals of the human body, such as blood pressure, heartbeat, and 
skin temperature van Eekelen et al. (2004); Kataoka et al. (2000); Val-
entini and Parati (2010). In particular, changes in heart rate variability 
are associated with cognitive and emotional stress Dishman et al. 
(2000); McDuff et al. (2016). This second approach has been used suc-
cessfully by several past studies Gal and Vuksanovic (2007); Montano 
et al. (2009); of the European Society of Cardiology the North American 
Society of Pacing Electrophysiology (1996). 

Zaman et al. Zaman et al. (2019) performed a study in which they 
measure stress and productivity in short sessions with 63 participants 
using biometric sensors (thermal facial camera, wrist EDA, chest 
breathing sensor, and facial camera). Different from this study, our 
corpus is gathered from real-world office workers. Also, our study spans 
for eight weeks allowing us to analyze the behavior or our participants 
through the weeks and providing a more extensive in-depth analysis of 
our participants over time. 

Hovsepian et al. Hovsepian et al. (2015) have worked to obtain a 
standard for continuous stress assessment. They used sensors to conduct 
a seven-day lab study with 26 participants, as well as a field study with 
20 participants. They found that their model showed significant 
improvement over simple heart rate variability measurements. Howev-
er, this model requires the use of a suite of invasive sensors that would be 
impractical for a study the length of ours. 

Hernandez et al. Hernandez et al. (2014) investigated the use of a 
pressure-sensitive keyboard and a capacitive mouse as non-intrusive 
means for measuring computer users’ stress levels. They found partici-
pants’ exhibited significantly increased typing pressure and mouse 
contact when in stressful conditions. McDuff et al. McDuff et al. (2016) 
experimented with a camera to measure photoplethysmographic signals 
indicative of cognitive stress. Vizer et al. Vizer et al. (2009) used 
keystroke and linguistic features to automatically measure stress levels 
in response to cognitive and physical stress conditions. All of these 
studies were performed in a controlled lab setting over a short duration 
and the results have yet to be replicated in the field. 

Kocielnik et al. Kocielnik et al. (2013) developed a framework for 
unobtrusive and continuous measurement of stress in real life condi-
tions. They equipped university staff members with a wristband sensor 
and combined this data with information from the participants’ calen-
dars over the course of four weeks. They observed that the data they 
collected reflected well the participants perceptions of their own stress 
levels. However, this work focused mostly on providing retrospective 
information to users so they can work to improve their own stress bal-
ance. They did not attempt to make observations about the big picture of 2 Biovotion Everion Biovotion (2019) 
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participants stress profiles or make predictions in real time. Also using a 
wristband, Hernandez et al. Hernandez et al. (2011) studied the stress 
level during calls in a call center over a seven day period. They collected 
skin conductance measures and examined the interpersonal variability 
of reporting stress. 

Our study stands out from these works by nature of its length and 
focus on knowledge worker stress in everyday office life, using unob-
trusive measures. To the best of our knowledge there is no longitudinal 
study that attempts to explain and predict knowledge worker stress that 
comes close to the length of our own study. The eight week duration 
gives us authority to speak on the nature of day-to-day fluctuations in 
knowledge worker stress levels. 

Rather than trying to measure or predict stress, several studies have 
induced stress and examined its effect on work performance, motivation 
and others. For instance, Sarsenbayeva et al. Sarsenbayeva et al. (2019) 
induced stress and studied how it affects mobile interaction, showing 
that it can reduce completion time and accuracy during target acquisi-
tion tasks. Evans and Johnson Evans and Johnson (2000) investigated 
the correlation between noise in the workplace and stress levels. They 
found that workers exposed to open-office noise showed aftereffects that 
indicate motivational deficits but found no difference in cortisol levels. 
The population for their experiment comprised 40 female clerical 
workers, who were randomly assigned to a control condition or to 
three-hour low-intensity noise room designed to simulate typical 
open-office noise levels. 

Stress in the workplace and its effects on service providers has also 
been analyzed in call centers Hernandez et al. (2011) and in the context 
of the perceived imbalance between resources and demands Cherniss 
(1980). These studies considered several factors such as personality 
traits, career-related goals and attitudes, as well as life outside of work, 
and examined their correlation with stress levels and burnout. 

Finally, there is also some work that already used proprietary stress 
measures for other types of classification. For example, Mirjafari et al. 
Mirjafari et al. (2019) used a proprietary stress measure by Garmin 
together with other data collected through the sensing of mobile devices 
and built machine learning models to differentiate between low and 
high performing workers. 

2.2. Focus 

Focus refers to the allocation of limited cognitive processing re-
sources Anderson (2004). Mark et al. Mark et al. (2014) studied atten-
tional states, including focus, for workplace activities by analyzing the 
digital activity of 32 information workers in situ for 5 days. They found 
that boredom is highest in the early afternoon and focus peaks in the 
middle of the afternoon. They also found that doing work that requires 
focus correlates with stress, while rote work correlates with happiness. 

Interruptions in the office are a common barriers keeping workers 
from sustaining focus on their work related activities, particularly when 
the interruptions occur at inopportune moments. Such interruptions 
may include emails, alerts, or interactions with co-workersChong and 
Siino (2006); González and Mark (2004); Iqbal and Horvitz (2007). In-
terruptions in inopportune times can have negative effects that range 
from higher error rate and lower overall performance to an increase in 
stress and frustration Bailey et al. (2001); Czerwinski et al. (2000); Mark 
et al. (2008). External interruptions may cause workers to enter a “chain 
of distraction” Iqbal and Horvitz (2007). This chain is composed by 
stages of preparation, diversion, resumption and recovery that result in 
time away from an ongoing task. Since interruptions can have a large 
impact on the focus and productivity of office workers, several studies 
have examined the prediction of interruptibility—the availability for 
interruptions—using a variety of features, including computer interac-
tion and biometrics Bailey and Iqbal (2008); Chen and Vertegaal (2004); 
Fogarty et al. (2005a); Iqbal and Bailey (2008); Züger and Fritz (2015); 
Zuger et al. (2018). Most of these studies were again conducted for small 
and controlled tasks over shorter periods of time. 

Other studied constructs that relate to focus in the workplace include 
cognitive absorption, cognitive engagement, flow, and mindfulness. 
Cognitive absorption describes periods of time in which a person expe-
riences total immersion in an activity. This state is also accompanied by 
a sense of deep enjoyment, a feeling of control, curiosity, and not real-
izing the passing of time. It has been associated with ease of use and 
perceived usefulness of information technology Agarwal and Karahanna 
(2000). Cognitive engagement is described Webster and Ho (1997) as a 
period of strong focus in an activity without the feeling of a sense of 
control of the situation. Flow Csikszentmihalyi (1990), and mindfulness 
Dane (2011); Weick and Sutcliffe (2006) are psychological states that 
describe periods of prolonged attention and total immersion in an ac-
tivity. Flow occurs when a person is focused on an activity that requires 
high challenge and high use of the person’s skills, whereas mindfulness 
is characterized by being aware of fine detail, affording the capacity to 
discover and manage unexpected events. 

2.3. Awakeness 

Sleepiness (lack of awakeness) and its associated risk of serious 
injury to passengers has been studied in the context of automobile ac-
cidents Connor et al. (2002); Nordbakke and Sagberg (2007). These 
studies show a strong association between the level of acute driver 
sleepiness and the risk of injury crash. Connor et al. Connor et al. (2002) 
conducted a population-based case study using the Stanford sleepiness 
scale, which is similar to a seven-point Likert scale and describes seven 
different levels of sleepiness from “Could not stay awake, sleep onset 
was imminent” (1) to “Felt active, wide awake” (7). Nordbakke and 
Sagberg Nordbakke and Sagberg (2007) show that drivers are well 
aware of various factors influencing the risk of falling asleep while 
driving. Drivers also have good knowledge of the most effective mea-
sures to prevent falling asleep at the wheel. However, most of drivers 
continue driving even when recognizing sleepiness signals, due to the 
desire to arrive at a reasonable time, the length of the drive, or 
pre-planed commitments. 

2.4. Biometrics 

Our study investigates the prediction of stress, focus, and awakeness 
using two different types of measurements, and biometric signals over 
eight weeks in a real-life office setting. Existing work Goyal and Fussell 
(2017); Healey and Picard (2005); Nakagawa et al. (2014); Parnin 
(2011); Radevski et al. (2015); Sano and Picard (2013); Wijsman et al. 
(2011); Züger and Fritz (2015)—some of it already mentioned above— 
analyzes a broad array of biometric signals and correlates them with 
individual’s cognitive states and processes. For example, Zuger et al. 
Zuger et al. (2018) used biometrics to sense interruptibility in the office 
Zuger et al. (2018). Biometric signals have also been studied in the 
context of technology users. For example, Parnin Parnin (2011) analyzes 
electromyography to measure sub-vocal utterances, and how these 
might be correlated with the programmer’s perceived difficulty of pro-
gramming tasks. Similarly, biometrics have been used to measure code 
difficulty by using biometric sensors Fritz et al. (2014) and using Near 
Infrared Spectroscopy to measure developer’s cerebral blood flow 
Nakagawa et al. (2014). 

Eye tracking technology Bednarik and Tukiainen (2006); Crosby and 
Stelovsky (1990); Rodeghero et al. (2014) and brain activity Ikutani and 
Uwano (2014); Siegmund et al. (2014) have been used in previous 
studies to examine different tasks in an office environment. Eye tracking 
has been used to analyze memory load and processing load by inspecting 
task-evoked pupillary response and pupil size Beatty (1982). Similar 
studies have shown high correlation between pupil size and mental 
workload of subtasks Beatty (1982) and cognitive load Klingner (2010). 
Brain activity has been associated with different mental states Berger 
(1929) by analyzing specific frequency bands (alpha, beta, gamma, 
delta, and theta) using electroencephalography (EEG). The increase or 
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decrease of some of these frequencies is correlated with attentional 
demand and working memory load Smith and Gevins (2005); Sterman 
et al. (1993). In contrast to studies that use eye tracking or EEG, we 
focused on a less invasive technology that can be applied in a real world 
scenario. Similarly, we considered adding additional metrics such as the 
Depression, Anxiety and Stress Scale (DASS) and the Perceived Stress 
Scale (PSS) Ferdous et al. (2015) but opted for the ones presented in the 
paper after several discussions with experts in the area, and after 
piloting surveys to maximize participant compliance. 

3. Field study 

We conducted an eight-week field study with 14 participants using 
experience sampling and biometric sensors to investigate how knowl-
edge workers experience stress and awakeness over time and the feasi-
bility of predicting stress, focus, and awakeness using biometric signals. 

3.1. Participants 

We recruited a group of 14 professionals via personal contacts from a 
large power and automation company. The group is diverse in terms of 
age, work experience, gender, and work responsibilities. All participants 
work primarily in an office environment, though half of the participants 
spend at least 10% (and up to 50%) of their time in a laboratory envi-
ronment. Office workers are a population that generalizes to a variety of 
contexts, including part-time laboratory workers, and guarantees that 
our participants have varying work patterns that include different levels 
of computer usage, as well as different levels of activity in both indi-
vidual and collaborative tasks. 

From the 14 participants, 11 are male and 3 are female. The average 
participant age is 40, with 5 in the age range 25-34, 7 in the age range 
35-44, and 2 in the age range 55+. The average number of years of 
professional experience of the participants is 12, with 2 having less than 
5 years, 10 having 5-15 years, and 2 having more than 25 years. All 
participants work for a research organization within the company, but 
their job functions span line management, laboratory science, scientific 
research, technology evaluation, and software development. 

3.2. Procedure 

We performed a study over the course of eight weeks. This study 
includes the collection of the participant’s biometric data and self- 
reporting surveys during their work hours. We also collected computer 
interaction data, but given privacy concerns of some participants chose 
not to use this data (see Section 3.3.2). We informed participants about 
the study purpose and procedure, handed out biometric sensors, intro-
duced and explained the self-reporting to the participants, handed out 
consent forms and ensured informed consent from each participant for 
the study. 

After the initial setup, participants were asked to fill out three sur-
veys each day for the following eight weeks (see Section 3.3.3) and wear 
the biometric sensor during their work hours. At the end of the eight 
weeks, we collected the biometric sensors and performed a short follow- 
up interview on the study and the participants’ experiences. 

Keeping participants engaged in an eight-week study can be difficult. 
In the second month of the study, largely to incentivize participants to 
continue, we offered participants two one-hour Tai Chi classes per week 
(each in the middle of the day) and asked them to attend one class a 
week. The choice of Tai Chi provided a link to mindfulness, a topic of 
growing interest in communities. Consultations we held with re-
searchers in psychiatry and psychology suggested Tai Chi as a good link 
to mindfulness and an intervention that might alleviate stress. By 
recording attendance of participants at the Tai Chi sessions, we are able 
to analyze the impact of the sessions on the results. As a brief summary, 
the impact of the sessions was minimal; we present an analysis of the 
effects in Section 6. 

3.3. Data collection 

We collected three datasets from each participant as described 
below: 

3.3.1. Biometric Sensors 
Figure 1 illustrates Biovotion’s Everion, which we used to track the 

biometric signals of the study participants. The Everion is worn on the 
upper arm and provides continuous monitoring of certain biometric 
measurements.3 Previous studies Goyal and Fussell (2017); Healey and 
Picard (2005); Sano and Picard (2013); Wijsman et al. (2011); Züger and 
Fritz (2015); Zuger et al. (2018) have used similar devices Electro 
(2019); Fitbit (2019); Okada et al. (2011) to capture 
psycho-physiological and biometric measurements for shorter periods of 
time or capturing a smaller number of measurements. A comparative 
study has shown that the Everion can be used as a valid proxy for HRV 
metrics for knowledge workers Barrios et al. (2019). 

Table 1 lists the biometrics measurements that we collected using the 
Everion. Each measurement is collected once per second, and each 
recorded observation has an associated timestamp and quality rating. 
Data collected by the Everion is uploaded to a server, from which we 
downloaded the data for use in our study. We chose these biometric 
measurements based on previous research which indicates their poten-
tial (see references in Table 1) and the availability and feasibility of 
collecting these measurements with low invasiveness over a long 
duration. 

3.3.2. Computer interaction data 
To gain a better understanding of our participants day-to-day work 

activities, we asked participants to install an open source computer 
interaction monitor Meyer et al. (2017). The monitor ran in the back-
ground on participants’ computers and tracked the active windows, as 
well as the keyboard and mouse activity. Four of our participants opted 
out of this part of the study for privacy reasons (S6, S10, S12, and S13). 

3.3.3. Surveys 
Following guidelines from previous studies Lalle et al. (2016); Luo 

et al. (2018); Panwar and Collins (2018) and following the preferences 
of extensive user piloting, we sent via text message a survey request to 
each participant two times per workday. Pilot participants preferred the 
usage of text message, in part, due to them being accessible and 
noticeable anywhere in the office. 

Fig. 1. We used Biovotion’s Everion to collect biometric measurements from 
the participants. 

3 https://biovotion.zendesk.com/hc/en-us/articles/213613165 
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We sent the first request at a random time between 9am and 11am 
and sent the second request at a random time between 1pm and 3pm. We 
randomized the request times to avoid either establishing or observing a 
standard behavioral pattern. That is, we did not want the participants to 
plan for the arrival of the survey request at a set time, and we did not 
want the survey request to overlap with a set daily behavior (e.g., coffee 
break every day at 2:30pm). Similarly, we avoided using tools which 
allow for too much freedom in response time Adams et al. (2018) since 
this would discourage participation in stressed time frames and would 
bias the corpus. The same survey was sent each time consisting of the 
following three questions:  

1. How awake are you right now?  
2. How stressed do you feel right now?  
3. How focused on work are you right now? 

We used the phrase “right now” to capture each aspect in the 
moment (so as to permit later prediction of each aspect based on bio-
metric data). The wording of the questions is based on a previous survey 
of individuals in an organizational context Gloor et al. (2010). The use of 
awakeness (rather than sleepiness) in Question 1 is inspired by previous 
work Wilhelm and Schoebi (2007) and to some extent also captures the 
“arousal” aspect of the affective space Russell (1980). 

One last survey was sent at the end of the day at 4:25pm, which asked 
the four different questions detailed below:  

1. How awake have you been today?  
2. How stressed did you feel today?  
3. How productive have you been today?  
4. How do you feel about your workday? 

Following guidelines from similar previous studies Fogarty et al. 
(2005b); Tanaka and Fujita (2011), we asked the participants to respond 
to each question using a 5-point Likert scale ranging from 1 (not at all 
awake/stressed/focused) to 5 (extremely awake/stressed/focused). 
Each participant response, as stored by Survey Gizmo, comprised the 
date, the time at which the response was initiated, the time at which the 
survey was submitted, the unique identifier for the participant, and the 
responses submitted by the participant. 

We did not ask our participants about their focus levels in the end of 
the day survey, as focus is more of an in-the-moment aspect than stress 
and awakeness. 

4. Observed trends over time in stress and awakeness levels 

To gain insights into how knowledge workers experience stress and 
awakeness over an extended period of work, we examined the end of day 
survey responses collected from each participant to see if any identifi-
able trends emerged. As we noted in the last section, we did not ask 
participants about focus in the end of day surveys as focus is an aspect 
relevant at a particular moment in time rather than an aspect for an 
extended period of work. We used data from 13 of the 14 participants - 
we excluded one participant from this analysis as they experienced 
atypical stress levels in the latter half of the study due to factors outside 
of our control. 

4.1. Stress Levels 

Overall, we identified three prominent characteristics in the stress 
levels. 

4.1.1. Baseline stress levels 
Common amongst all participants was a trend to select one stress 

rating far more frequently than any other. We will refer to this value as 
the participant’s baseline stress level. All but one participant reported 
their perceived stress level for the day as their baseline stress level more 
than 50% of the time. In total, the baseline values made up 65% of the 
reported values collected from participants. Interestingly, while partic-
ipants sometimes saw periods of sustained increases in stress, lasting as 
many as 6 consecutive workdays in the most extreme case, participants 
would always return to their baseline stress level at some point. 

The baseline stress level varied significantly between participants. 
Seven participants (54%) reported feeling average stress levels most 
frequently (rating 3 on our scale), while five (38%) reported feeling little 
stress (rating 2) and one (8%) reported feeling no stress at all (rating 1). 
Figure 2 illustrates these points using data from two participants, 
showing the tendency to report and return to baseline stress levels, as 
well as a distinct difference in baseline stress level (rating 2 for S1 vs 
rating 3 for S3). Gaps in the chart for S1 represent days for which the 
participant did not report their stress level. 

4.1.2. Stressful days tend to cluster 
Accounting for the variance between participants perceived stress 

baselines, we consider a stressful day to be one that represents a devi-
ation of one or more stress levels above the participant’s baseline. Of the 
93 stressful days we observed in total, we found that 39 (41%) of these 
days occurred in groupings of two or more consecutive stressful work-
days. The most common size of these groups was two workdays, while 
the largest group we observed was six workdays. The day after a stressful 
day is much more likely to be a stressful day as compared to any other 
day with a 0.55 average increase over baseline, compared to 0.02 
average increase over baseline. 

4.1.3. Extreme changes in stress levels are rare 
After accounting for each participant’s perceived stress baseline, we 

examined the frequency of deviations from the baseline. We found that 
participants were far more likely to report a stress level that was within 
one point of their baseline, than to report a stress level 2 or more points 
away. These extreme deviations represented only 15% of all reported 
values, which differed from the participant’s baseline. As well, the 
majority (78%) of these deviations came from just two participants. This 
suggests that some people may be less resilient to the stress of the 
workplace than others. For most participants, extremely stressful days 
were few and far between. 

4.2. Awakeness 

We applied the same analyses described above to the self-reported 
awakeness levels of our participants. Compared with the reported 

Table 1 
Biometric measurements captured by the Everion, organized by category and 
with references to previous works using similar data. (RMSSD denotes the root 
mean square of successive heartbeat interval differences).  

Biometric 
Measurement 

Units of Measure 

Physical Activity Aldana et al. (1996); Fox (1999) 
Intensity of motion (No unit) 
Energy Expenditure Calories per second (cal/s) 
Step counter Steps 
Heart Haag et al. (2004); Haapalainen et al. (2010); Healey and 

Picard (2005); Mulder (1992) 
Heart rate Beats per Minute (bpm) 
Blood pulse wave (No Unit) 
Heart rate variability: 

RMSSD 
Milliseconds (ms) 

Blood oxygenation Percent (%) 
Blood perfusion (No unit) 
Skin Haag et al. (2004); Healey and Picard (2005) 
Galvanic skin response kOhm 
Skin temperature Degrees Celsius (∘C)  
Respiration Haag et al. (2004); Healey and Picard (2005); Masaoka 

and Homma (1997); Mulder (1992) 
Respiratory rate Breaths per Minute (bpm)  
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stress levels, we observed the same trend of participants reporting one 
baseline far more commonly than any other. We did not find there to be 
a significant correlation between reported stress and awakeness levels. 
Overall, participant’s awakeness levels fluctuated significantly less than 
their stress levels (73.1% of reports were at the baseline level, compared 
to 65.1% for stress, p < 0.05). Participants were unlikely to experience 
days with heightened (above baseline) awakeness. Such days made up 
only 6.0% of the total observed workdays across all participant. Most of 
these days came from one participant, S2, who reported 15 heightened 
awakeness days compared to the next highest, S13 with four. Large 
deviations (>1 point deviation) from each participants baseline awak-
eness levels were extremely uncommon, accounting for only nine (2.1%) 
of our total observations. Similarly to what we observed with high stress 
days, low awakeness days frequently came in clusters of two or three 
days in a row. Given that the immediately preceding day was a low 
awakeness day; a given day was 228.2% more likely to be a low 
awakeness day than when considering any day at random (p < 0.0001). 

4.3. Explaining fluctuations 

In an attempt to explain some of the fluctuations in stress and 
awakeness that our participants were experiencing, we created a linear 
mixed model with the self-reported daily stress and awakeness levels as 
dependent variables and the participants as random effects. We 
experimented with day of the week and proximity to beginning or end of 
month as possible explanatory variables. Ultimately, the analysis 
showed that none of the variables that we examined had a significant 
explanatory power with respect to our participants perceived stress 
levels. For awakeness, we found that there was a small (fixed effects 
estimate: -0.178) yet significant decrease in awakeness levels on Fridays 
in particular. Table 2 shows some of the detailed results of these ana-
lyses. These results show the difficulty of explaining a person’s stress and 
awakeness via simple measures, and point to the need for additional 

instrumentation and data collection if we are to successfully understand 
and make predictions about these human aspects in the workplace. 

5. Predicting stress, focus and awakeness in the moment 

To investigate whether stress, focus and awakeness can be predicted 
in the moment based on biometric measures, we investigated classifiers 
trained for each individual and across all participants. We report on the 
effectiveness of these classifiers and the features that are important in 
predicting stress, focus and awakeness. 

Fig. 2. The day-to-day stress levels reported by two participants (S1 and S3) are shown. The y-axis represents values on the 5-point Likert scale we asked participants 
to respond with ranging from 1/Not at all stressed to 5/Extremely stressed. The x-axis represents the day of the study on which the value was recorded (from 0-45). 
Some gaps are present in the chart for S1 as they did not report their stress level on those days. 

Table 2 
Fixed effects estimates (F.E.E.), 95% confidence intervals (C.I.) and associated p- 
values for the explanatory variables (day of week and proximity to month end) 
that we examined in our linear mixed model analysis.   

Stress Awakeness 

Variable F.E.E. p- 
value 

C.I. (95%) F.E.E. p- 
value 

C.I. (95%) 

Monday -0.033 0.745 ( − 0.234,
0.167)

-0.058 0.497 ( − 0.227,
0.110)

Tuesday 0.028 0.773 ( − 0.164,
0.221)

0.036 0.662 ( − 0.126,
0.198)

Wednesday 0.163 0.100 ( − 0.031,
0.357)

-0.018 0.830 ( − 0.181,
0.145)

Thursday 0.022 0.821 ( − 0.169,
0.213)

0.076 0.927 ( − 0.085,
0.238)

Friday 0.082 0.473 ( − 0.142,
0.306)

-0.178 0.025 ( − 0.334, −
0.022)

Month End 0.044 0.687 ( − 0.171,
0.259)

-0.082 0.374 ( − 0.263,
0.099)
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5.1. Data Preparation 

In a machine learning context, data preparation and utilization is an 
essential part of the proposed solution. To prepare the collected data for 
use in training and testing our proposed machine learning models, we 
performed the following steps. 

5.1.1. Data Cleaning 
All data recorded by the Everion is associated with a quality score 

ranging from 0-1 that is calculated using proprietary methods. In 
accordance with the recommendations of Biovotion, to prevent our re-
sults from being effected by erroneous data we set a quality threshold of 
0.5 and discarded any data gathered which had a quality rating below 
this threshold. 

5.1.2. Data Linking 
We linked the collected biometric data and survey responses for each 

participant. Linking the data is necessary to construct training and test 
datasets for use in creating and evaluating machine learning models. 

To link the data, we look back one hour from the start time of each 
survey response for available biometric data. For example, if a partici-
pant started a survey response at 11:05am, we look for biometric data 
from between 10:05am to 11:05am. If no biometric data was recorded in 
the hour time window, we exclude the survey response from the dataset. 
Otherwise, we consider the survey response to have associated biometric 
data. 

There are several reasons for a survey response to lack associated 
biometric data:  

• The participant was not wearing the Everion in the hour before 
beginning the survey.  

• The Everion was not recording data in the hour before the participant 
began the survey (e.g., due to low battery).  

• Biometric data was not being uploaded successfully to the server. 

Figure 3 illustrates the number of survey responses with associated 
biometric data for each study participant. The total number of responses 
per participant is affected by their response rate and by the number days 
out-of-office (e.g., vacations, holidays, etc.). Participant S2 and S12 have 
particularly low numbers of usable survey responses. In each of these 
cases, the issue related to biometric data not being uploaded successfully 
to the server. 

5.1.3. Feature Extraction 
We extracted features from the biometric data to provide as input to 

machine learning models. Previous studies  Bernstein and Zurfluh 
(2005); Züger and Fritz (2015) identify time windows as an important 

factor that impacts the prediction accuracy of a classifier. We considered 
many time windows from the literature on biometric analysis Zuger 
et al. (2018), ranging from 10 seconds to 3 hours. Specifically, we 
considered the following time windows: 10sec, 20sec, 30sec, 45sec, 1min, 
2min, 3min, 5min, 7.5min, 10min, 20min, 30min, 45min, 1hour, 2hour, 
3hour. 

From the start time of each survey response, we look back the 
amount of time that corresponds to each time window and we create 
features for all of the biometric data available in that time window. For 
example, if a participant started a survey response at 11:05am, for the 
30min time window, we create features using all of the available bio-
metric data from 10:35am to 11:05am. If there is a large portion (≥50%) 
of data missing (either because of a recording issue or because of low 
quality data) from the time window considered, then the time window is 
marked as missing. In this case, features are imputed based on the mean 
of other samples of the same feature for that participant. This is an 
effective and commonly used technique, which is preferable to the 
alternative of deletion as it preserves our already small sample size 
Hawthorne et al. (2005). For each time window, we calculate 10 sta-
tistical measurements from the biometric data to create 10 distinct 
features. Specifically, the 10 statistical measurements are: mean, stan-
dard deviation, variance, median, 25th percentile, 75th percentile, 
interquartile range, maximum, minimum, and range. Thus, for each 
survey response, we generate a large number of corresponding features 
based on three factors: biometric measurement, time window, and sta-
tistical measurement. In addition to these biometric features, we also 
considered the time of day in which the questions were asked. These 
features are created to predict the responses described by the ground 
truth. To attempt to account for inter-participant differences, we 
normalized all features on a per-participant basis. 

5.1.4. Response Transformations 
Table 3 illustrates the distribution of responses from each participant 

for each of the three survey questions (listed in Section 3.3.3). The figure 
shows that there is a notable imbalance in the distribution of the self- 
reported responses provided by the participants. Most participants did 
not use all five points of the five-point Likert scale in their responses, and 
the distributions tend to skew toward one side or the other, depending 
on the question. Given this distribution and based on our earlier 
observation that the participants tended to adhere to a baseline 
reporting level for stress and awakeness, we elected to simplify the 
problem from five classes to two. This transformation enables us to more 
easily represent patterns in the data, such as when a participant fluc-
tuates from a normal to high stress level. To perform this transformation, 
we began by calculating the median response value for each participant 
and each question. We classified each response below the median as 
0 (‘negative’) and each response above the median as 1 (‘positive’). The 

Fig. 3. The figure shows the biometric data available per each participant. Green sections represent survey responses with biometric data available, red sections 
responses with no biometric data available. 
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distribution for the stress question skewed left, so we included the me-
dian values in the ‘positive’ class (i.e. ‘stressed’), while the distributions 
for focus and awakeness skewed right, so we included those median 
values in the ‘negative’ class (i.e. ‘not focused’, ‘not awake’). 

With this method, we transformed the survey data into a two-point 
scale, representing negative or positive responses for each of the three 
human aspects of interests (e.g., not stressed or stressed). 

5.1.5. Oversampling 
Even after binarizing the responses as described in the previous 

section, we found the distribution of responses was still quite imbal-
anced for many of our participants. This can be seen in the distribution 
columns in Table 4. To mitigate this effect, we applied random over-
sampling to our training sets, which artificially rebalances the dataset by 
creating randomly replicated data in the minority class. This technique 
has commonly been used in previous studies on unbalanced datasets 

Chawla et al. (2004); Yap et al. (2014). 

5.2. Selecting a Classifier Algorithm 

Many different algorithms can be used to build a classifier. To select 
an algorithm, we compared multiple classifiers using the popular ma-
chine learning library scikit-learn Pedregosa et al. (2011), evaluating 
each one by using leave-one-out cross validation. Our analysis showed 
that random forest outperforms all other classifiers, including Naïve 
Bayes, decision trees, support vector machine, and a multilayer per-
ceptron neural network. For the remainder of this paper, we refer to a 
random forest classifier. 

5.3. Individual Classifiers 

Since peoples’ experience of stress, focus, and awakeness (as well as 

Table 3 
The distribution of the responses of each participant to the three questions asked during the day are shown. Each bar in the histograms represent one of the five values 
on the 5-point Likert scale we asked participants to respond with, where the far left side of the histograms are 1/Not at all, and the far right sides are 5/Extremely.  

Table 4 
Results of predictions using the individual models. The distribution columns show the proportion of the minority class out of the total number of responses for each of 
the three variables. The baseline rows represents the averaged results of our baseline classifiers. The general row shows the averaged results of our models trained on all 
participants.  
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their physiological manifestations) can vary substantially (e.g., Her-
nandez et al. (2011)), we first trained and evaluated individual classi-
fiers for each participant (as opposed to a general one for all 
participants) using leave-one-out cross validation. The results of our 
analysis are reported in Table 4. For our analysis, we report values of 
accuracy, one of the most commonly used metric to compare perfor-
mance, as well as precision and recall of the classes of interest: ‘stressed’, 
‘not focused’, and ‘not awake’. Since the imbalance in the data can lead 
to high accuracy values if a classifier always just predicts the most 
likely/frequent class while ignoring the class of higher importance and 
interest, precision and recall of the class of interest are also important to 
consider Bhattacharyya et al. (2011); Hernandez et al. (2011); Yap et al. 
(2014). 

Besides our results, for the purposes of comparison, we also present 
two commonly used baselines in this table - a majority classifier, which 
always predicts the larger of the two classes considered, and a stratified 
random classifier which randomly chooses between the two classes, but 
with a proportional bias towards the larger class. 

For some users (i.e., S1. as seen in Table 3), the imbalance in their 
data was so extreme that even after adjusting by oversampling, we were 
not able to create a reasonable classifier. These scenarios are difficult to 
predict, as any classifier will not have enough variance in its training 
data for the ’stressed’ situation to adequately distinguish it from the 
non-stressed case. 

Overall, we were able to use extracted physiological features to 
predict all three aspects with reasonable accuracy, precision, and recall. 
We present a comparison between the averaged results of our individual 
classifiers and those of the baseline stratified random classifier in the 
“Improvement Over Random” row of Table 4. This is calculated as the 
difference between the overall average and the baseline results, divided 
by the baseline results (for example, AccOverall − AccRandom

AccRandom
). We do not compare 

our results with the majority classifier directly as this classifier achieved 
precision and recall scores of zero when predicting stress, lack of focus, 
and lack of awakeness, making a meaningful comparison unfeasible. The 
improvement percentages demonstrate that the predictions made by our 
classifiers are much better than random after correcting for the imbal-
ance in our dataset. 

While the individually trained classifiers improved on average across 
all participants upon the baseline in all cases except in recall of ‘not 
focused’, the improvement was substantially higher for awakeness 
(52.4% improvement in precision, 40.8% in recall, and 6.5% in accu-
racy) than for stress or focus. In addition, the performance of the indi-
vidually trained classifiers varied greatly across participants. While 
some participants showed a large improvement, for others the baseline 
performed much better than the individually trained classifier. For 
instance, for predicting ‘stressed’, the individual classifiers improved 
upon the baseline for S4, S6, S8, S11, S12, and S14 with a maximum 
improvement of 152.0% in precision and 111.1% in recall for S12, while 
they did worse for S1, S3, S5, S7, S9, S10, and S13, and in the worst cases 
did not correctly predict a single instance of ‘stressed’. Typically, users 
that have the lowest precision and recall values are those where the data 
is the most imbalanced. 

5.4. Feature Selection and Importance 

There are a large variety of features that can be (and have been) 
calculated in previous research for each of the basic measurements listed 
in Table 1, such as the mean, standard deviation, maximum, and 
interquartile range. In addition, each of these metrics can be combined 
with the various time windows captured of a basic measurement, 
resulting in a large feature space. To reduce the feature space, we 
experimented with multiple feature selection methods, including 
selecting the top k highest correlated features by various metrics such as 
mutual information, Pearson’s correlation coefficient, ANOVA’s F- 
value, as well as wrapper methods such as recursive feature elimination, 

optimizing mean decrease accuracy by iteratively permuting features, 
and only selecting features that exceed a certain Gini importance 
threshold. We found that all methods produced similar results with 
respect to accuracy, precision, and recall for the individual models. 
Ultimately, we elected not to utilize any feature selection in order to 
simplify our approach, as we found there to be minimal differences in 
performance between the techniques, and the random forest algorithm 
is capable of (and robust for) handling datasets with many features. 

Overall, the features that were selected as the important ones for the 
individual models based on the random forest algorithm varied greatly 
across participants. Yet, some feature categories were considered to be 
important more frequently than others. Table 5 shows the averaged Gini 
importance for the feature categories used for predicting stress. Heart 
rate variability proved to be an important measure for all of the aspects 
of interest, ranking as the most important feature category for both 
stress and awakeness, and the second most important one for focus. This 
is not surprising, as heart rate variability and skin temperature have 
been shown in several previous studies to be possible indicators for 
stress levels Dishman et al. (2000); Kataoka et al. (2000); McDuff et al. 
(2016). We also found blood pulse wave to be an important indicator for 
both focus and awakeness, but less important for stress, while respira-
tion rate was important in stress and focus but not awakeness. Besides 
these mentioned feature categories, there was great variation in which 
measures were important to which of the three aspects. This shows that 
there is a clear benefit to having multiple biometric streams available for 
predicting stress, focus and awakeness. 

5.5. Individual vs. General Model 

Individual models are trained specifically for each individual and 
thus require a data collection period before they are capable of making 
accurate predictions. On the other hand, the idea of general models is to 
be able to train them on already collected data and then to be able to 
apply them even to new and unseen individuals, thus overcoming the 
cold-start problem. Given the large individual differences in biometrics, 
training a general model to achieve an adequate accuracy for new in-
dividuals is not necessarily possible. 

To examine the performance of a general model for our participants, 
we trained three general models, one for focus, one for awakeness and 
one for stress. We roughly followed the same procedure as for the in-
dividual models. Due to the larger amount of data available in the 
general case, we used the more common random undersampling, which 
randomly selects elements in the majority class to exclude from the 
dataset, instead of random oversampling to balance the distribution of 
the dataset. The models were trained on the datasets of 13 of the 14 
participants, and then evaluated on the dataset of the last (leave-one- 
participant-out cross-validation), repeating this process for all 14 
participants. 

The bottom three rows of Table 4 present the averaged performance 
results for this approach in terms of accuracy, precision, and recall, as 
well as the results of baseline stratified random and majority classifiers 

Table 5 
The averaged Gini importance of each feature category, per response variable.  

Feature Category Stress Focus Awakeness 

Heart Rate Variability 18.3% 13% 13.6% 
Blood Pulse Wave 10% 14.2% 13.1% 
Heart Rate 8.7% 12.6% 10.3% 
Skin Temperature 15.7% 9.8% 10% 
Galvanic Skin Response 6.6% 8.2% 5.1% 
Respiration Rate 14.8% 12.7% 10% 
Oxygen Saturation 5.6% 4.3% 2% 
Energy Expenditure 6% 7.7% 4.8% 
Activity 4.6% 7.8% 7.6% 
Steps 1.7% 0.8% 0.9% 
Time of Day 0% 0.1% 0.5%  
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following the same leave-one-group-out cross-validation procedure. 
Although the averaged precision and recall are comparable or better 
than those of the averaged individual results, this was at the cost of a 
large decrease in overall accuracy. Upon closer investigation into the 
performance of the general model when testing on each participant, we 
found that individually trained models for each participant performed 
much better than a general model trained over all participants. Using 
stress as an example, for participant S12, for whom we saw the greatest 
increase compared to the baseline in individual models, the general 
model was unable to predict a single instance of ‘stressed’ correctly. This 
is consistent with our expectations because biometric features are highly 
specific to individuals. 

6. Discussion 

Humans experience stress, focus and awakeness in different ways. In 
this paper, we have attempted to study these mental states in the 
workplace using both participant self-reports and biometric data. We 
discuss implications from our study for the workplace, including ways in 
which the information might inform digitally-controlled or digitally- 
informed parts of the workplace. We also discuss challenges imposed 
by the data and possible future paths of research. 

6.1. Implications for Workplaces 

Being able to accurately recognize periods of high-stress in knowl-
edge workers could enable more respectful workplaces. For example, an 
ability to sense and predict stress in the moment could help companies 
prevent or de-escalate potentially dangerous situations in the workplace 
(e.g., confrontation between co-workers). Building an understanding of 
stress and focus over time and in the moment could also help create 
workplaces that are more conducive to enabling knowledge workers to 
be more productive. For example, this information could be used to feed 
an awareness dashboard of a team’s stress level, and avoid digital in-
terruptions in high-stress or high-focus periods similar to previous 
studies Züger et al. (2017). Building an understanding of awakeness and 
focus could also enable the creation of workplaces that are conducive to 
workers producing higher-quality work. For example, if awakeness or 
focus decreases, they might be enhanced by adapting lighting in the 
workplace or scheduling breaks to prevent focus loss. 

Currently, the cost of biometric sensors and necessary infrastructure, 
such as automated light and sound systems for adjusting the environ-
ment, makes our approach most appropriate for high-value workspaces, 
such as control rooms, command centers, or dispatch offices. However, 
as standard office settings become more personalizable (e.g., via 
adjustable desks, lighting, and sound showers) and sensor costs 
decrease, our approach could be applied to any office environment, and 
thus could impact a large percentage of modern workers. 

As in modern cars, temperature and lighting could be regulated on a 
per-person basis, which would allow the environment to react to the 
person’s current state and to maximize each person’s preferences and 
productivity (e.g., preferences of men and women in temperature Kar-
jalainen (2007)). We believe that our results present a good step to more 
in situ usage of biometric sensing. Future studies can build on the evi-
dence, and for example, reduce the effort required for the experience 
sampling from continuously rating stress levels to using biometrics as a 
ground truth with occasional validation of the predicted stress levels, or 
identify how to balance needs across a group of office workers and how 
to handle conflicting levels between different group members. 

6.2. The Effect of Tai Chi on Stress 

As described in our study procedure, due to our focus on stress, we 
offered participants an opportunity to be part of Tai Chi classes. The two 
primary reasons for this intervention were to keep participants moti-
vated to continue the self-reports over the long study period, and to offer 

a technique that might help reduce stress. After consulting with other 
researchers, we decided to offer Tai Chi in the last month of the study, 
leaving the first month of the study unaltered. While participants were 
not required to take a Tai Chi class, they all took one per week except for 
two participants that opted out of the last two weeks of classes. Four 
participants explicitly stated that they liked the Tai Chi sessions or that 
they were “excellent”. These classes were performed once per week with 
a duration of one hour. 

While this was not the focus of our study, we performed a secondary 
analysis to examine whether the Tai Chi classes had any effect on the 
participants’ stress levels in the workdays directly following the Tai Chi 
session. For this, we build a linear mixed model with the self-reported 
daily stress level as dependent variables and the participants as 
random effects. We found that Tai Chi attendance contributed a small 
amount to decreased stress in the work week immediately following the 
Tai Chi session (slope of -0.188, p <0.05). However, we did not find a 
connection between attendance and stress on the day of the session 
suggesting that Tai Chi might have long-term effects, but is not condu-
cive at relieving stress close in time to the intervention. Overall, the Tai 
Chi thus had a small impact on the collected data of the second month of 
the study, which poses a threat to the validity to our observed trends for 
this period of time. However, since knowledge workers might attend 
these kinds of classes on their own doing, we believe that this is negli-
gible, and the analysis rather provides a weak indication that this kind of 
stress intervention might in fact help to reduce stress in the wild. 

6.3. Ground Truth and Self-Reporting 

Studying mental states, such as stress, awakeness and focus, requires 
collecting a valid ground truth from each participant. We spent 
considerable time when designing the study determining the exact 
questions to ask of participants, consulting experts in the area, and 
basing the questions and wording on previous research and studies. 
Despite the care taken, it is possible that the gathered data lacks reli-
ability and validity. Some have questioned the reliability and validity of 
self-reports as we used in our study due to subjective biases, lack of care 
in reporting, and the highly individual nature of reporting aspects such 
as stress Hernandez et al. (2011); Hovsepian et al. (2015). 

In addition, in contexts such as the workplace, as in our study, par-
ticipants might be afraid to genuinely report levels of aspects, such as 
sleepiness. Hence, there is a chance that the self-reports we gathered do 
not adequately reflect the ground truth of the underlying variables 
under investigation. It could even be the case that certain biometrics 
might represent a more accurate ground truth of the studied phenomena 
than the self-reports. This suggests that a more confirmative study rather 
than an inquiry study could be a better approach, and we will explore 
such routes in future work. 

6.4. Imbalanced Data 

Study participants provided highly imbalanced data in their survey 
responses, with most participants only taking advantage of a subset of 
the Likert-scale values and the data points mostly being clustered around 
the middle of the scale, as can be seen in Table 3. While some of the 
imbalance is expected due to certain classes, such as ‘not stressed’, being 
more common in the workplace, this imbalance also provides challenges 
in the training and assessment of a machine learning classifier, as also 
found by others, e.g. Exler et al. (2016). We addressed this for the 
training by oversampling in case of few data samples for the individual 
models and undersampling in case of a general model where more data 
was available. Rebalancing the dataset using such techniques is a com-
mon and effective practice Branco et al. (2016). Alternative techniques 
such as SMOTE Chawla et al. (2002) exist and can perform better than 
those we employed, however they are impractical considering the 
limited amount of data we have to work with. 

Oversampling the dataset as we did may also lead to an increased risk 
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of model overfitting. However, we believe the benefits of rebalancing 
the dataset outweigh this possible downside. In light of the imbalance in 
the data, the results we achieved with our models are encouraging. For 
the assessment of the classifiers’ performance we addressed the imbal-
ance by not just presenting accuracy, but also by focusing on prediction 
and recall to examine the classifier’s performance in predicting the 
infrequent (yet more important) cases, such as when a user is struggling 
to stay awake and an intervention or warning might be needed most. 

6.5. Predicting Stress with Computer Interaction Data 

Knowledge workers, a focus of our work and study, often spend a 
large amount of time each day interacting with information on their 
computer at work. An interesting direction for future study is to consider 
whether this computer interaction data, which can be gathered non- 
invasively as work occurs, could serve to sense and predict stress, 
focus and awakeness. Features that could be investigated include key-
strokes per minute, mouse clicks per minute and changes in the active 
window title. 

7. Threats to Validity 

There are numerous threats to validity to our study. 

7.1. External Validity 

The results of our study may not generalize to a broader population 
of office workers. To mitigate this risk, we collected participants from a 
wide variety of departments with different age ranges, genders, work 
experience, and working in different positions therefore providing evi-
dence that our approach’s performance is comprised of and can gener-
alize to a wide range of knowledge workers. 

Secondly, our results may not generalize to a different office envi-
ronment. We conducted this study in a typical office environment, 
similar to many among technology workers across the world. These 
office environments control for a series of variables to make them 
standard worldwide such as controlled temperature and lighting. 

7.2. Internal Validity 

This study tries to find correlations between biometric features and 
the human aspects of stress, focus, and awakeness. Nonetheless, bio-
metric signals are influenced by far more variables than the ones this 
study comprehends. Therefore, trying to draw a strong causality be-
tween the biometric features and the aspects would be inaccurate. To 
mitigate this risk, we collected the data in a rote environment and in a 
regular manner to minimize the number of external causes that may 
affect each participant’s biometric signals. 

It is possible that the amount of data collected is not sufficient to 
draw valid conclusions. To address this threat, we collected a data for an 
eight-week period, which is 400% longer than the longest previous 
studies Muller and Fritz (2016); Zuger et al. (2018). 

Due to the small amount of data available to us for the purposes of 
this study, there is a risk that our models may be overfitting to some 
degree. Such overfitting indicates that the results presented in our work 
may be less than optimal, however any overfitting applies strictly to the 
training data and given that there is no overlap between the data used 
for training and testing, we do not believe this invalidates our results. 
We leave further optimization of our approach to future researchers. 

7.3. Construct Validity 

A threat to the study is that there are other factors that might either 
influence the human aspects of interest or that were considered but are 
unrelated biometric signals. To mitigate this risk, we used a state-of-the- 
art device that captures a large number of highly accurate biometric 

signals. We collected the most commonly analyzed biometrics that his-
torically have shown correlation with the studied human aspects of 
stress, focus and awakeness. In an effort to maintain this research 
applicable to real-world environments, we picked the already existing 
Everion device, even when, as a trade-off, we could not capture more 
descriptive and more intrusive signals such as SDNN, SCL, SCR, eye 
tracking, or brain activity. 

A future more thorough statistical analysis of the relationships be-
tween the aspects of interest, such as stress, and the physiological data 
may further provide deeper insights into the data and how it might be 
used in prediction. 

8. Conclusions 

Stress, awakeness, and focus at work are highly relevant aspects 
when it comes to productivity and well-being at the workplace. In this 
paper, we presented the results of a study with 14 professional knowl-
edge workers in their workplace over an eight-week period to better 
understand how workers experience these human aspects over time and 
to examine the ability of biometrics to predict these aspects. The lon-
gitudinal and in-situ placement of the study support and extend previous 
work. Based on daily collected survey responses, we observed that 
although participants sometimes saw periods of sustained stress or 
sleepiness, they would always return to their baseline reporting level at 
some point. We also observed that stress levels seldom spiked, but when 
they did rise, the rise in stress tended to last more than a day. In addition 
to the survey responses, we continually collected biometric data with 
which we were able to create a model that is able to predict user stress, 
sleepiness, and lack of focus with small improvements in accuracy (from 
3.1% to 7.2%, depending on the aspect in question), and moderate im-
provements in precision (25.9% - 52.4%) in comparison to a stratified 
random classifier. While the precision and recall scores we report are 
still low overall, this is a difficult problem to solve and our improve-
ments indicate the potential for future researchers to build upon. 

These results open up new opportunities to help increase knowledge 
workers’ productivity and well-being, ranging from instantaneously 
taking action to prevent potentially risky situations and prevent acci-
dents due to a lack of focus or awakeness, all the way to recommending 
interventions to reduce stress if it becomes more chronic. 
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