
Common Statement Kind Changes to Inform Automatic
Program Repair

Mauricio Soto
Carnegie Mellon University

Pittsburgh, PA
mauriciosoto@cmu.edu

Claire Le Goues
Carnegie Mellon University

Pittsburgh, PA
clegoues@cs.cmu.edu

ABSTRACT
The search space for automatic program repair approaches is vast
and the search for mechanisms to help restrict this search are in-
creasing. We make a granular analysis based on statement kinds
to find which statements are more likely to be modified than oth-
ers when fixing an error. We construct a corpus for analysis by
delimiting debugging regions in the provided dataset and recur-
sively analyze the differences between the Simplified Syntax Trees
associated with EditEvent’s. We build a distribution of statement
kinds with their corresponding likelihood of being modified and
we validate the usage of this distribution to guide the statement
selection. We then build association rules with different confidence
thresholds to describe statement kinds commonlymodified together
for multi-edit patch creation. Finally we evaluate association rule
coverage over a held out test set and find that when using a 95%
confidence threshold we can create less and more accurate rules
that fully cover 93.8% of the testing instances.

CCS CONCEPTS
• Software and its engineering→ Software evolution;
ACM Reference Format:
Mauricio Soto and Claire Le Goues. 2018. Common Statement Kind Changes
to Inform Automatic Program Repair. InMSR ’18: MSR ’18: 15th International
Conference on Mining Software Repositories , May 28–29, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3196398.
3196472

1 INTRODUCTION
Bug repair is one of the most resource consuming tasks in software
development [2, 12, 15]. In the last decade there has been increasing
attention to techniques for automatic program repair (APR), which
repair software bugs automatically (e.g. [5, 6, 13, 14]). One family
of techniques follows a syntactic generate-and-validate approach
(e.g. [3, 5, 10, 13]). These techniques take as input a buggy program
and a test suite containing passing tests cases and failing test cases
(which expose a defect). The approaches then generate patch candi-
dates by applying and combining syntactic source transformations,
and validate these candidates against the test suite.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196472

One challenge in this process is that the search space of patch
candidates is trivially infinite. APR approaches thus restrict the con-
sidered transformations, and use off-the-shelf fault localization [13]
to reduce the number of locations considered for editing. One prob-
lem is that statistical fault localization can often assign multiple
statements the same score [4]. Even further, patches that require
more than one edit are commonly found in the real world and have
been vastly understudied. The need for mechanisms that help guide
the search space for multi-edit patches keeps growing.

Evidence shows that not all statements are modified equally, and
there are benefits from using history-based data [5, 11]. Therefore,
we first analyze the most commonly modified statement kinds and
evaluate how the fault localization process can benefit from assign-
ing a higher priority to the statements most commonly modified.
Second, we create association rules to describe relationships be-
tween statement kinds commonly modified together to inform the
creation of multi-edit patch candidates.

The MSR Challenge dataset [9] describes the actions performed
by developers when coding. We mined changes performed in the
debugging process by delimiting debugging regions and comparing
the simplified syntax trees (SST) of consecutive EditEvent’s using
an state-of-the-art tree differencing tool [8]. We then apply the
association rule learning algorithm Apriori [1] to this corpus to
obtain relationships that describe what statement kinds are edited
commonly together.

We evaluate the level to which the rules can predict edits by
analyzing what sections of the events are covered by the learned
association rules. Finally we analyze the confidence level of the
learned rules. We found that when we use a 95% confidence thresh-
old, we can create association rules that maintain the same flexi-
bility as lower confidence thresholds, but increases the accuracy
of the created rules and decreases the number of rules delimiting
even more the search space of potential edits performed by APR
approaches to obtain successful patches.

The main contributions of this paper are the following:

• We describe the distribution of statement kinds being
modified by developers when fixing errors in source code.

• We evaluate the selection process of statement kinds to
be modified to fix source code errors, using history-based
data (49.54% correctly guessed), compared against an equally
distributed random approach (5.11% correctly guessed).

• We create association rules that describe the behavior of
statement kinds that developers modify commonly together.
We evaluate the expressive power of the learned rules, we
find that we can fully cover 93.8% of the held-out events
while maintaining 95% confidence.

https://doi.org/10.1145/3196398.3196472
https://doi.org/10.1145/3196398.3196472
https://doi.org/10.1145/3196398.3196472

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Mauricio Soto and Claire Le Goues

2 CREATING THE CORPUS
We collect a corpus of events based in modifications developers
perform when fixing an error from the MSR Challenge dataset [9].
We then use this corpus to find differences between consecutive
events and their corresponding Simplified Syntax Tree’s (a snapshot
of the source codewhen the event took place) to create a distribution
of statement kinds modified and association rules.

2.1 Delimiting Debugging Regions
The first step towards analyzing the debugging process is identi-
fying periods during which a developer is trying to fix a bug. We
delimit the debugging regions by starting at a point in time δ where
a TestRunEvent is triggered and all test cases were run (test case
execution was not aborted) but one or more test cases failed, while
in the previous TestRunEvent, all tests passed. The delimitation ends
at a later point in time ϵ where ϵ is the closest TestRunEvent later
in chronological order where all test cases were ran and passed.

Figure 1 shows an example of a time line with only the TestRun-
Events shown. “P" represents a case where all test cases passed;
“F" represents a case where one or more test cases failed. The
debugging areas are shown by the brackets demarcated with
“DA". Note that between delimiting points δ and ϵ there can be
several TestRunEvent’s with failing test cases, meaning that the
developer is actively debugging the error pointed out by the failing
test cases, but still has not been able to make all test cases pass.

Figure 1: Example of the process used to obtain the demar-
cation of debugging areas. Events where all test cases pass
(P) and events where one or more tests fail (F) are analyzed
to create debugging areas (DA).

We identified 634 debugging sequences in the dataset provided
by the MSR Challenge [9]. Within these debugging sequences, there
are 1,251,334 unique events, from which 1,748 are EditEvent’s that
have associated a not-unknown Contexts, and therefore contain
a valid Simplified Syntax Tree. These EditEvent’s are our primary
subject of analysis.

2.2 Simplified Syntax Tree Differencing
Given two consecutive EditEvent’s within a debugging region, we
proceed to analyze the differences between their two associated Sim-
plified Syntax Trees (SST). These correspond to the modifications
the developer performed while debugging. We use the state-of-the-
art tree differencing tool APTED [8], recursively converting the
SST’s into a representation readable by APTED. Once we know
which nodes were modified between EditEvents, we record their
corresponding statement types.

2.3 Statement Kind Distribution and
Association Rule Creation

We analyzed the distribution of statement kinds modified in the
corpus. EditEvent’s may modify more than one statement kind,
therefore the sum of these distribution does not sum to 100%.
From our 1,748 events, the most commonly modified statement
kinds are ExpressionStatement’s, modified in 1,272 (72.8%) corpus
events, followed by Assignment’s modified in 1,186 events (67.8%).
VariableDeclaration’s are modified in 1,071 events (61.3%) and
ReturnStatement’s in 714 events (40.8%).1 This confirms our initial
hypothesis that not all statement kinds are modified equally.

To collect rules for statement kinds that are modified together
in multi-edit patches, we use Apriori [1] to create association rules.
Association rule learning is a machine learning mechanism that
identifies relationships between objects in large datasets. Associ-
ation rules are implications of the form X =⇒ Y . This learning
mechanism takes into account Confidence (a measure of the likeli-
hood of the consequent section being present given the antecedent)
and Support (how frequently the set of statement types in the rule
occurs in the corpus). Using our corpus of edits and their associated
statement types, we create association rules that provide guidelines
for what statement types are modified together commonly.

3 EVALUATION
We evaluate the modified statement kind selection process by com-
paring a random selection against our History-based approach
which gives higher priority to more commonly modified statement
kinds. We then evaluate the association rules by measuring the
percentage of edit instances they correctly predict, or cover.

3.1 History-Based Statement Selection
To evaluate the distribution of the statement kinds modified in the
corpus, we compare against an equally distributed counterpart. This
simulates the process being used by most current APR approaches
where code is analyzed, using a fault localization mechanism, and
a statement is randomly selected from the most suspicious block.

We evaluate the process of selecting a statement kind informed
by history-based data and check if it correctly predicts held-out
instances. We use 10 fold cross validation to avoid training and
testing on the same data. For each fold, we iterate through each
EditEvent. For the equally distributed approach, we randomly select
one from all possible statement kinds and check if the selected
statement kind was modified in the EditEvent. For our history-
informed approach, we create a distribution of the statement kinds
modified from the complement of the fold, and select a statement
kind bounded by the associated distribution. The more commonly
modified statement kinds are more likely to be chosen than the less
commonly modified statement kinds.

Table 1 describes the results per each evaluated fold. On average,
the History-based approach is able to correctly guess one of the
statement kinds 49.54%. The Equally distributed approach on aver-
age is only able to correctly guess 5.11% of the time. Two sample
t-test indicates that the difference between the Equally distributed
and History-based approaches is statistically significant (α < 0.05).

1The full list is available in https://github.com/squaresLab/MSRChallenge2018

Common Statement Kind Changes to Inform Automatic Program Repair MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 1: Evaluation of modified statement kind selection
(Equally distributed vs History-based).

Equally Distributed History-Based
Fold Count Percentage Count Percentage
1 13 (7.39%) 72 (40.90%)
2 4 (2.27%) 98 (55.68%)
3 11 (6.25%) 86 (48.86%)
4 7 (3.98%) 84 (47.72%)
5 10 (5.68%) 92 (52.27%)
6 7 (3.98%) 89 (50.57%)
7 10 (5.68%) 92 (52.27%)
8 8 (4.54%) 89 (50.57%)
9 11 (6.25%) 96 (54.54%)
10 9 (5.11%) 74 (42.04%)
Mean 9 5.11 87.2 49.54
Std Dev 2.45 1.39 8.15 4.43

3.2 Association Rule Coverage
We next evaluate the effectiveness of the association rules and their
potential for use in building the necessary edits to create successful
multi-edit patches. We first remove from our corpus the instances
where the developers performed a single edit. This removed 578
instances from the initial 1,748. We perform this restriction because
association rules by definition require at least two elements: an
antecedent and a consequent.

We then analyze how often the association rules can build the
modifications in the events by using rule coverage. We use 10 fold
cross validation to avoid training and testing in overlapping data.
First, we divide our corpus into 10 folds. For each of the folds we
perform the following actions: the selected fold is used as testing
data, and the remaining nine folds are used to create association
rules. We then analyze how many of the events in the testing data
can be built from the association rules created from the remaining
nine folds. The learned rules can either cover all the edits in an
event (the event is fully covered), they can cover some of the edits
in an event (the event is partially covered), or they can cover none
of the edits in an event (the event is not covered).

We show an example for further understanding of the coverage
concept. Table 2 shows three events. In our example Event 1 de-
scribes an event where the developer modified an Assignment, a
ForLoop and an IfElseBlock. The rules shown in Table 2 represent
rules created from the remaining nine folds of the corpus. In our
example: Rule 1 indicates that when an Assignment and a ForLoop
have been modified, the next step is to modify an IfElseBlock.

In this example, Event 1 is fully covered since Rule 1 covers all the
edits in the event. For Event 2, Rule 1 does not apply, even though
Event 2 contains the antecedent of Rule 1, it does not contain the
consequent, therefore the rule is discarded. Rule 2 does apply to
cover the latter two edits of Event 2, therefore Event 2 is partially
covered. Finally Event 3 is not covered, even when some of its edits
are contained in the antecedent of the rules, there is no rule that
would successfully predict the behavior of this event.

Table 2: Events (top); learned association rules (bottom).

Events

1 Assignment; ForLoop; IfElseBlock
2 Assignment; ForLoop; VariableDeclaration
3 Assignment; ForLoop; ReturnStmt

Association Rules

1 Assignment ∧ ForLoop → IfElseBlock
2 ForLoop → VariableDeclaration

Finally we performed this analysis at 3 different confidence
thresholds (90%, 95%, 100%) to compare the accuracy of the rules
against the number of rules that can be created with lower con-
fidence. Higher confidence produces a small set of very accurate
rules, in which it is very likely that when the antecedent is present
the consequent will be present as well. But this approach does not
allow for much flexibility and the rules overfit to the corpus they
were created from. Lower confidence creates a wide set of rules that
are less accurate (if the antecedent is present is does not necessarily
mean that the consequent will be present as well) but more flexible.

For each confidence threshold of 90%, 95%, and 100%, we evalu-
ated association rule coverage on a held out dataset, using a standard
10 fold cross validation process. Finally, we aggregate the results
from all folds.

Figure 2 shows our results for each of the different confidence
thresholds as described below.
90% confidence threshold: When evaluating the rules created
under a 90% threshold, 94.14% of the events are fully covered, 1.87%
are partially covered, and 3.99% are not covered. When using this
approach, an average of 2837.2 rules were created for the 10 folds.
95% confidence threshold: 93.80% of the testing instances are
fully covered, 2.04% are partially covered, and 4.9% are not covered.
On, average 2134.3 rules were created.
100% confidence threshold: Finally, 35.85% are fully covered,
2.29% are partially covered, and 72.80% are not covered. On av-
erage, 1484.6 rules were created when using this approach.

We found that when creating association rules with empirical
data for automatic program repair, 95% confidence appears idea:
it maintains very similar flexibility to the 90% threshold with im-
proved accuracy. This also means that the number of rules created
decreases, which helpfully restricts the search space by restricting
it to a smaller number of more accurate rules.

3.3 Threats to Validity
Internal validity: To tackle possible errors in our implementation
and experiments, we release our code to be reviewed by the other
researchers.2 Weuse the debugging regions based on TestRunEvent’s
as a proxy for debugging intent since capturing developer’s intent
is a non-trivial task. We also use 10 fold cross validation to reduce
the risk of training and testing on the same data.
External validity: It is possible that our results will not generalize
to external datasets and to real bug fixes. To mitigate this concern,
2All instruments and source available in https://github.com/squaresLab/MSRChallenge2018

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Mauricio Soto and Claire Le Goues

Figure 2: The wide bars are described by the left Y axis. This
represents the percentage of instances covered fully, par-
tially or not by the association rules (higher full coverage is
better). The thin bars are described by the right Y axis. This
represents the number of rules created for each confidence
threshold (lower is better). The bars from left to right de-
scribe the cross validation results when using 90%, 95% and
100% confidence thresholds correspondingly.

we have created our corpus from the dataset made available to us
by the MSR Challenge [9] which records the steps developers take
while in the software development process. This dataset is gathered
from a diverse pool of volunteers with different backgrounds and
levels of expertise.

4 RELATEDWORK
Soto et al. [11] have created association rules to inform the APR
process basing their corpus in mutation operators taken from
popular Github projects written in Java using commit level granu-
larity, different from our approach which creates association rules
for statement types based in finer grained C# code changes [9].
Mutation operators help to inform what action to perform next,
while statement types help to inform what object to modify next.
Par [5] describes an analysis of common changes applied by hu-
mans when fixing errors and templates that can be mined from their
corpus. HDRepair [3] uses fix history at a broader level to assess
patch suitability. Zhong and Su [16] conduct an empirical study on
six popular Java projects analyzing the incidence of three mutation
operators. Martinez and Monperrus [7] study mutation operator in-
cidence across 14 projects. Prophet [6] creates a probabilistic model
from the history of 8 different projects to rank candidate patches.

5 CONCLUSIONS
In this study we mined the dataset provided by the MSR Chal-
lenge [9] to create a corpus of highly granular edits performed
by developers in the process of fixing an error in source code. We
identify debugging regions and inspect the changes between the
simplified syntax trees from each of the EditEvent’s to create a cor-
pus of events. We analyze the distribution of commonly modified

statement kinds and evaluate how a search process bounded by
this history can correctly guess (49.54% of cases) what statement
kind is modified to fix an error, as opposed to its equally distributed
counterpart (5.11% of the cases).

We then create association rules to provide guidelines of what
kinds of statement to edit together to create successful multi-edit
patches. We measure how many of the events can be fully, partially,
or not covered by the association rules; we find that 95% appears
to be the preferred confidence threshold. We are able to fully cover
93.80% of the events with a 95% confidence threshold which in-
creases the accuracy of the rules created and decreases the number
of rules, therefore helping delimit the vast search space in automatic
program repair. These findings can be used to guide the creation of
multi-edit patches in an APR context therefore delimiting the vast
search space and providing guidelines for properly selecting state-
ment kinds to modify based in the history of developer changes.

ACKNOWLEDGMENTS
This research was partially funded by AFRL (#FA8750-15-2-0075)
and the NSF (CCF-1563797); the authors are grateful for their sup-
port. Any opinions, findings, or recommendations expressed by the
authors do not necessarily reflect those of the US Government.

REFERENCES
[1] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining

Association Rules in Large Databases. In 20th International Conference on Very
Large Data Bases (VLDB’94). 478–499.

[2] Tom Britton, Lisa Jeng, GrahamCarver, Paul Cheak, and Tomer Katzenellenbogen.
2013. Reversible debugging software. Technical Report.

[3] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Pro-
gram Repair. In International Conference on Software Analysis, Evolution, and
Reengineering (SANER’16).

[4] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test
Information to Assist Fault Localization. In International Conference on Software
Engineering (ICSE’02). 467–477.

[5] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Auto-
matic patch generation learned from human-written patches. In International
Conference on Software Engineering (ICSE’13). 802–811.

[6] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Symposium on Principles of Programming Languages (POPL ’16).
298–312.

[7] Matias Martinez and Martin Monperrus. 2015. Mining Software Repair Models
for Reasoning on the Search Space of Automated Program Fixing. In Empirical
Software Engineering (ESE’15). 176–205.

[8] Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient Computation of the Tree
Edit Distance. ACM Transactions on Database Systems (TODS) 40. Issue 1.

[9] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams: A
General Dataset for Empirical Studies on In-IDEActivities of Software Developers.
In Proceedings of the 15th Working Conference on Mining Software Repositories.

[10] Yuhua Qi, Xiaoguang Mao, and Yan Lei. 2013. Efficient Automated Program
Repair through Fault-Recorded Testing Prioritization. In International Conference
on Software Maintenance (ICSM’13). 180–189.

[11] Mauricio Soto and Claire Le Goues. 2018. Using a Probabilistic Model to Predict
Bug Fixes. In Software Analysis, Evolution, and Reengineering 2018.

[12] Gregory Tassey. 2002. The economic impacts of inadequate infrastructure for
software testing. Technical Report.

[13] Westley Weimer, Michael Dewey-Vogt, Claire Le Goues, and Stephanie Forrest.
2012. A systematic study of automated program repair: fixing 55 out of 105 bugs
for $8 each. In International Conference on Software Engineering (ICSE’12). 3–13.

[14] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. 2013. Leveraging Pro-
gram Equivalence for Adaptive Program Repair: Models and First Results. In
IEEE/ACM International Conference on Automated Software Engineering (ASE’13).
356–âĂŞ366.

[15] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. 2007.
How longwill it take to fix this bug?. In InternationalWorkshop onMining Software
Repositories (MSR’07). 1.

[16] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug fixes. In
International Conference on Software Engineering (ICSE’15). 913–923.

	Abstract
	1 Introduction
	2 Creating the Corpus
	2.1 Delimiting Debugging Regions
	2.2 Simplified Syntax Tree Differencing
	2.3 Statement Kind Distribution and Association Rule Creation

	3 Evaluation
	3.1 History-Based Statement Selection
	3.2 Association Rule Coverage
	3.3 Threats to Validity

	4 Related Work
	5 Conclusions
	Acknowledgments
	References

