Improving Patch Quality by Enhancing Key
Components of Automatic Program Repair

Mauricio Soto
Carnegie Mellon University
Pittsburgh, PA
mauriciosoto@cmu.edu

Abstract—The error repair process in software systems is,
historically, a resource-consuming task that relies heavily in
developer manual effort. Automatic program repair approaches
enable the repair of software with minimum human interaction,
therefore, mitigating the burden from developers. However, a
problem automatically generated patches commonly suffer is
generating low-quality patches (which overfit to one program
specification, thus not generalizing to an independent oracle
evaluation). This work proposes a set of mechanisms to increase
the quality of plausible patches including an analysis of test suite
behavior and their key characteristics for automatic program
repair, analyzing developer behavior to inform the mutation
operator selection distribution, and a study of patch diversity
as a means to create consolidated higher quality fixes.

Index Terms—Automatic Program Repair, Patch Quality

I. INTRODUCTION

Software is pervasive and bugs in programs may have a
significant impact in prominent areas of society. The cost of
debugging software globally has risen to 312 billion dollars
annually, and developers spend, on average, half of their time
finding and repairing bugs [7]. Errors as such can compromise
systems’ security and privacy (e.g., Heartbleed [3]), and even
cause death (e.g., Therac-25 medical radiation device [10]).
Therefore, significant research efforts have focused on creating
automatic program repair (APR) approaches [9], [12], [19]
able to repair errors with minimum human interaction.

One well-known family of approaches, known as generate-
and-validate repair, takes as input a program with a set of bugs
and a test suite with passing and failing test cases describing
correct functionality and desired but currently incorrect be-
havior (a bug). These approaches then generate variants of the
original source code and validate them through the guiding test
suite until a plausible patch is found (a variant that suffices
the specification of the guiding test suite).

A common problem automatic program repair approaches
face is the possible creation of low-quality plausible patches.
This phenomenon occurs when the approach finds a variant
that suffices the specification of the guiding test suite but it
does not generalize to an oracle evaluation (e.g., a knowl-
edgeable developer or a held-out independently created test
suite). Our proposed work pursues to improve the generated
patches’ quality therefore closing the gap between theory and
the application of these approaches in real-world systems.

Related Work: There have been previous efforts to increase
the quality of candidate patches in automatic program repair

improving upon previous approaches, however, not seeking to
increase patch diversity nor increase the quality of plausible
patches. HDRepair [11] modifies the fitness function based
in fix history to assess patch suitability. The fitness of patch
candidates is determined by how closely the changes in a patch
occur in the analyzed corpus using a graph-based represen-
tation of the patches. Prophet [13] ranks candidate patches
based on a probabilistic model mined from eight projects.
GenProg [12], PAR [9] and TRPAutoRepair [19] are examples
among a family of syntactic-based automatic program repair
approaches seeking to generate patch candidates by modifying
the program’s syntax while semantic-based approaches use
code synthesis to construct fix code. Test suite behavior in the
context of automatic program repair has been studied in the C
language with a corpus of programs written by novices [15].

There have been previous attempts to improve the quality
of software by incentivizing diversity. N-Version Software is
a way to take advantage of different implementations of code
created following the same specification [2]. Smith et al. [15]
compare the performance of single patches to hypothetical n-
version patches, where the behavior of the n-version patches
is described by a voting system where the n-version patch’s
behavior is determined by the behavior of the majority of
the single patches. The work proposed in this paper leverages
these previous ideas to create real n-version patches with actual
compilable code to be executed by the test cases.

I, consequently, propose a set of mechanisms to improve
the quality of plausible patches and thus the likelihood of
generalizing to an oracle evaluation. My solution includes an
analysis on the role of test suites in the repair process and
how modifying characteristics of the guiding test suite leads to
better quality patches, analyzing human behavior to inform the
distribution of program edits and statement kinds as selected
by APR approaches, and a study on patch diversity and how
patch consolidation can be used as a tool to increase the quality
of plausible patches.

Hence, my thesis statement is the following:

Improving key components of the automatic program
repair process such as test suite quality, mutation operator
selection, and patch consolidation leads to an improve-
ment in the quality of the produced plausible patches.

Some of the major contributions of this work are:

o Analysis of test suite characteristics and evaluation of
APR approaches in real-world defects

o Creation of developer-informed repair approach

o Study of software diversity in the context of APR and
creation of a multi-objective repair approach

The rest of this paper discusses three techniques to improve
patch quality in APR, it proceeds as follows: Research Thrust
I analyzes the role of test suites in automatic program repair,
Research Thrust II depicts an study of developer patching
behavior, Research Thrust III argues the potential of patch
diversity and patch consolidation as a means to increase patch
quality.

II. RESEARCH THRUST I: ANALYZING THE ROLE OF TEST
SUITES IN THE APR PROCESS

In my first research thrust I hypothesize that enhancing
key characteristics of the guiding test suite can lead to an
improvement of the produced patches. More concretely, we
conducted an experiment where we modify the coverage, size,
and provenance, among other characteristics from the guiding
test suites with the intent of analyzing which quality features
from the test suite have higher impact in patch quality.

We generated a set of plausible patches from the corpus De-
fects4J [8] since it is a database and extensible framework of
real-world bugs that enables reproducible studies in software
testing and has been previously used to evaluate automatic
program repair [14], [18].

To create plausible patches, we created a publicly available
Java Repair Framework (JaRFly)' which includes three APR
approaches for Java: GenProg [12], PAR [9] and TRPAu-
toRepair [19]. Since generate-and-validate approaches rely in
stochastic processes, we executed each bug in the corpus using
20 different seeds with a 4 hour budget per each seed. We
found a total of 1,298 plausible patches from 68 bugs.

To measure the relationship between test suite coverage and
repair quality, where coverage is measured using statement
coverage in the defective version of code by the training test
suite, and size is measured as the number of test cases in the
training test suite, we created subsets of test cases from the
developer-written test suite of varying coverage.

One principled way to evaluate patch quality in automatic
program repair is by using held-out test suites as a quality
mechanism checking if the plausible patches generalize to a
different instance of the same specification [15]. To analyze
the quality of the plausible patches generated we created an
independent automatically generated held-out test suite from
the developer’s patch using Evosuite [6], and executed these
held-out test suites on the patches generated using the subsets
of test cases of varying coverage.

For GenProg patches, the training test suite coverage was
significant at p < 0.1 but not significant at p < 0.05; while the
training test suite size was significant at p < 0.05. For PAR,
both, training test suite coverage and size were significant at

Thttps://github.com/squaresLab/genprog4java

GenProg PAR TRPAutoRepair

patch quality (%)

010 25 40 55 70 8 100
patch quality (%)

0 10 25 40 55 70 85 100

patch quality (%)
010 25 40 55 70 8 100

developer EvoSuite developer EvoSuite developer EvoSuite

Fig. 1. Using EvoSuite-generated test suites for program repair resulted in
fewer patches than those generated using the developer-written test suites.
The box-and-whisker plots compare the quality of the defect populations.
The horizontal line represents the median and the red dot shows the mean.

p < 0.05. For TRPAutoRepair, the training test suite coverage
was significant at p < 0.1 but not significant at p < 0.05;
while the training test suite size was significant at p < 0.05.
These results provide evidence that there is significant effect
of the training test suite size on the quality of the patches
produced using automatic program repair techniques and a
less significant effect of the training test suite coverage.

To measure the association between test suite provenance
and patch quality, we executed the repair techniques using
the EvoSuite-generated tests and measure their quality using
the independent, developer-written test suite. To control for
defects, we consider only program versions that can be patched
using test suites from both provenances.

Figure 1 shows the quality of the patches generated using
the two provenances. The box-and-whisker plots show the
distribution of patch quality. The Mann-Whitney U test rejects
the null hypothesis that states that these populations do not
differ (p = 2.98 x 1076 for GenProg, p = 1.51 x 10~*
for PAR, and p = 6.2 x 10~7 for TrpAutoRepair). The
delta estimate computed using Cliff’s Delta test shows that
median patch quality of the patches produced using EvoSuite-
generated test suites is lower for GenProg and TrpAutoRepair
whereas it is higher for PAR. The 95% confidence interval (CI)
does not span 0 for all three techniques indicating that, with
95% probability, two populations are likely to have different
distributions.

These results show that the provenance of the guiding test
suite has a significant effect on repair quality. Our conclusion
is consistent with earlier findings [15]. However, our results
indicate that the effect may not be the same for all techniques.

ITI. RESEARCH THRUST II: ANALYZING DEVELOPER
BEHAVIOR TO INFORM AUTOMATIC PROGRAM REPAIR

In my second research thrust, I hypothesize that mim-
icking human behavior selection decisions instead of using
the current heuristic-based approach would lead to higher
quality patches. These heuristics are mostly based in general
approximations of reasonable behavior and have not been
carefully calibrated. My intuition is that since developers have
a wide understanding of what edits and statements need to be
selected to fix errors, analyzing developer behavior to fine-tune

the selection decisions in APR would increase the produced
patches’ quality.

In this study we mined a substantial corpus of bug fixing
commits created by human developers from popular projects
in GitHub. We then analyzed the distribution of mutation
operators as used per developers by comparing the differences
between the AST representation of the before-fix version and
the after-fix version, and matching these differences to the
mutation operators used by state-of-the-art APR approaches.
We then designed and executed an experiment to compare
APR approaches using this distribution against approaches
using the heuristic-based distribution showing that APR tools
informed by human behavior find higher quality patches faster
in most analyzed cases. This work has been completed and
published [18].

In other of our related studies, I have analyzed prominent
corpora of bug fixing commits creating association rules to de-
termine what statement types [17] and mutation operators [18]
are used commonly together by developers to inform multi-
edit patches and how there is a tension between the quantity
and the confidence of the generated rules to be used in APR.
We also analyze how developers replace statement kinds, and
with what frequency each statement kind is replaced, deleted
or added [16]. We conclude that a mutation operator selection
mechanism informed by developer behavior creates higher
quality patches faster than its heuristic-based counterpart and
that automatic program repair benefits from having a diverse
mutation operator pool.

IV. RESEARCH THRUST III: PATCH DIVERSITY AND
CONSOLIDATION

In my third research thrust I hypothesize that consolidating
plausible patches leveraging semantic and syntactic diversity
might lead to higher quality fixes. The intuition behind this
idea is that each plausible patch is a partial solution that fails to
cover all possible cases from the specification, therefore con-
solidating several plausible patches might increase the number
of cases described by the specification and thus the quality of
the overall consolidated solution. I have conducted an initial
experiment showing the success of patch consolidation in a
subset of the corpus described in the previous section by
consolidating the generated plausible patches using the off-
the-shelf software merging tool JDime [1].2

First, we create all possible combinations of two distinct
patches using off-the-shelf combination mechanisms provided
by Jdime: Line-based (similar to GitHub merge), and Struc-
tured (a merge considering the AST).

We then used held-out test suites to evaluate the quality
of the consolidated patches product of all the combinations
of two patches per each bug. Figure 2 describes the behavior
of the consolidated patches. Bars describe the quality of the
combinations that perform better than the individual patches
using the left axis, and the line describes the number of
combinations created per each approach using the right axis.

Zhttps://github.com/se-passau/jdime

Patch Combination Quality Assessment
60% 500

50%

40%
300

20%
1
10% i
. = | [| .

GP/Line-Based ~ GP/Structured TRP/Line-Based TRP/Structured PAR/Line-Based PAR/Structured

Combinations better than single patches
Number of combinations

S
3

Combination quality is higher than at least one of their corresponding single patches
W Combination quality is higher than both their corresponding single patches

Combination quality is lower than at least one of their corresponding single patches
m Combination quality is lower than both their corresponding single patches

Number of compilable combinations generated using the single patches

Fig. 2. Quality assessment of patch combinations and their corresponding
individual plausible patches

The results show that up to 54% of the consolidated patches
show higher quality than at least one of their corresponding
individual plausible patches, and up to 37% of the consolidated
patches show higher quality than both of their corresponding
individual plausible patches. This shows that there is a consid-
erable potential in patch consolidation as a means to improve
plausible patch quality. Next, I propose the future work:

A. Improve Diversity of Generated Patches

One problem I have found in the population of plausible
patches we have generated is the lack of diversity in the sam-
ple. It is common to find patches that are semantically identical
based on manual inspection. This plausible patch generating
behavior shown in automatic program repair tools could be
improved by incentivizing the search for diversity. I propose
to enhance the methodology to traverse the search space of
patch candidates in an effort to increase the semantic and
syntactic difference of plausible patches, therefore amplifying
the potential of increasing quality by patch consolidation.

1) Modify the Fitness Function to Incentivize Diversity:
Several current approaches use genetic programming to find
plausible patch candidates. Genetic programming relies on
a fitness function used to compute the likelihood of patch
candidates to be plausible patches. Current approaches set
their fitness function to look mainly for patch correctness by
assigning a fitness score based on the number of passing test
cases. This fitness score determines the candidate’s likelihood
to be selected in future generations.

One way to incentivize diversity when traversing the search
space is by modifying the fitness function to look not only for
patch correctness, but also for semantic diversity between the
candidate patches. I propose a fitness function based in multi-
objective search to look for both correctness and diversity
therefore selecting the Pareto-optimal patch candidates which
excel in both features as opposed to the the current one-
dimensional approach.

To identify patch diversity there needs to be a quantitative
measurement to analyze how different is a program with

respect to another. Since program equivalence is an undecid-
able problem, I propose four quantitative measurements which
approximate program equivalence and diversity.

Test-suite based semantic difference: Figure 3 shows a di-
agram of the proposed process to measure semantic difference.
It starts with two programs: Program A and Program B. The
goal is to determine how semantically different are Program
A and Program B. Step 1: create a specification from each
of the programs. In this case the specifications take the form
of a test suite generated based on the program. This may be
achieved using test suite generation tools (e.g., Evosuite [6],
Randoop).

Candidate Patch A Candidate Patch B
—— - — — +Report Program A: [ra, ray, ra,, .., raj]
— = Report Program B: [rby, rby, rb,, ..., rb]]

2

\ @ Hamming Distance Between Two Reports:

J
hd =Z x|x=1iffra,Yrb, = true
i=0
(5) Semantic difference =
Hamming Distance / Number Of Test Cases =

_————

1
1
1
1
1
1

Test Suite A

Test Suite B

\ltag, tay, tay, ., ta,] [tby thy, thy, .., th,] 1 hd/j
N e e 7
\ @ @ /7
aar’ P
®\ ~ o 4 @

—— Specification generation

~ - ’
Se_ || ---
— + Specification consolidation

Joint Test Suite AB = — » Specification evaluation

[tag tay, tay, ..., ta, thy, thy, th,, ..., th,]
= [ito jty, ity -, jt}]

Fig. 3. Semantic difference measurement

Step 2, both specifications are consolidated and this consoli-
dated specification is used to evaluate each individual program
(Step 3). The evaluations are then compared using Hamming
distance, and the final score is computed as the number of
test cases that behave differently in both candidate patches as
a percentage of all test cases.

2) Slicing Mutation Operators and Fault Space: Another
possible way to increase the diversity in plausible patches is
by restricting the search space to different clusters therefore
trying to find local optima in different sections of the search
space instead of seeking the global optimum every time. I
propose to restrict the search space in three different ways:
Slicing mutation operators, fault locations, and test cases.

APR approaches use edits, usually referred to as mutation
operators, to create patch candidates. When slicing mutation
operators I will restrict our APR approaches to only use non-
overlapping sets of mutation operators. This will force the
approach to look for a patch candidate that uses the mutation
operators in a given set only. Similarly, when slicing fault
locations and test cases, the approaches will be forced to look
for candidate patches considering only a set of given fault
locations or test cases therefore increasing the diversity of
solutions.

B. Timeline

The proposed timeline shown in Figure 4 includes the two
most relevant previous projects and proposed following tasks.

Jun-16 Jun-17 Jun-18 Jun-19 Jun-20

Human Behavior Study (1.5 years)

Test Suite Behavior Study (2.8 years)
Preliminary Work and Proposal (6 months)
Create Diversity-Driven APR Tool (6 months)
Run Diversity-Driven Experiment (3 months)
Consolidate Individual Patches (3 months)
Create Test Suites/Evaluate Quality (2 months)
Analyze Characteristics of Patches (3 months)
Prepare Thesis Defense (3 months)

Thesis
Proposal

Thesis
Defense

Fig. 4. Proposed timeline for thesis

V. CONCLUSION

Automatic program repair is a promising area with sig-
nificant results. Nevertheless, a common problem these ap-
proaches suffer is the creation of low-quality plausible patches
(which overfit to the guiding test suite). We, therefore, propose
a set of mechanisms to improve the quality of plausible
patches. The proposed future work focuses in increasing patch
diversity generated in APR and improve the quality of said
patches through patch consolidation. An initial experiment
shows that patch consolidation leads to an increase in quality
over one single patch in 54% of the consolidated patches, and
an increase in quality over both individual patches in 37% of
the consolidated patches.

REFERENCES

[1]1 S. Apel, O. Leenich, and C. Lengauer. Structured merge with auto-
tuning: balancing precision and performance. In ICSE 2012.

[2] A.A. Avizienis. The Methodology of N-version Programming. Software
Fault Tolerance, edited by M. Lyu, John Wiley & Sons, 1995.

[3] M. Carvalho, J. DeMott, R. Ford, D. A. Wheeler. Heartbleed 101. In
IEEE Security Privacy. Volume 12, Issue 4, 2014

[4] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. In ICSE 2000, pp. 449-458.

[5] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus. Fine-
grained and accurate source code differencing. In ASE 2014.

[6] G. Fraser and A. Arcuri. Evosuite: automatic test suite generation for
object-oriented software. In ESEC/FSE 11, pages 416-419.

[71 P. Goodliffe. Becoming a Better Programmer. OReilly Media, Inc., 2014.

[8] R.Just, D. Jalali, and M. Ernst. Defects4J: A Database of Existing Faults
to Enable Controlled Testing Studies for Java Programs. In ISSTA 2014.

[9] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation

learned from human-written patches. In ICSE 2013, pages 802-811.

N. G. Leveson, C. S. Turner. An Investigation of the Therac-25 Acci-

dents. In IEEE Computer,

X.-B. D. Le, D. Lo, and C. Le Goues. History driven program repair.

In SANER, 2016.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A

Generic Method for Automatic Software Repair. In IEEE TSE 2012.

F. Long and M. Rinard. Automatic patch generation by learning correct

code. In POPL’16, pages 298-312, 2016.

M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus.

Automatic repair of real bugs in java: A large-scale experiment on the

defects4j dataset. In Springer Empirical Software Engineering, 2016.

E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is the cure worse than

the disease? Overfitting in automated program repair. In ESEC/FSE15.

M. Soto, F. Thung, C. Wong, C. Le Goues, and D. Lo. A Deeper Look

into Bug Fixes:Patterns,Replacements,Deletions,and Additions.MSR’16.

M. Soto and C. Le Goues. Common Statement Kind Changes To Inform

Automatic Program Repair. In MSR 2018.

M. Soto and C. Le Goues. Using a Probabilistic Model to Predict Bug

Fixes. In Proceedings of SANER 2018.

Y. Qi, X. Mao, and Y. Lei. Efficient automated program repair through

fault-recorded testing prioritization. In ICSM 2013, pages 180-189.

[10]
(11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]

[19]

